Log in | Register

Non-invasive ventilation as a strategy for weaning from invasive mechanical ventilation: a systematic review and Bayesian meta-analysisOpen access

Joyce Yeung| Keith Couper| Elizabeth G. Ryan| Simon Gates| Nick Hart| Gavin D. Perkins
Systematic Review
Volume 44, Issue 12 / December , 2018

Pages 2192 - 2204

Abstract

Purpose

A systematic review and meta-analysis was conducted to answer the question ‘In adults with respiratory failure requiring invasive ventilation for more than 24 h, does a weaning strategy with early extubation to non-invasive ventilation (NIV) compared to invasive ventilation weaning reduce all-cause hospital mortality?’

Methods

We included randomised and quasi-randomised controlled trials that evaluated the use of non-invasive ventilation, compared to invasive ventilation, as a weaning strategy in adults mechanically ventilated for at least 24 h. The EMBASE, MEDLINE and Cochrane Central Register of Controlled Trials (CENTRAL) bibliographic databases were searched from inception to February 2018. Bayesian hierarchical models were used to perform the meta-analysis. The primary outcome was mortality at hospital discharge. Secondary outcomes included mortality (30, 60, 90 and 180 days), quality of life, duration of invasive ventilation, weaning failure, length of stay [intensive care unit (ICU) and hospital] and adverse events.

Results

Twenty-five relevant studies involving 1609 patients were included in the quantitative analysis. Studies had moderate to high risk of bias due to risk of performance and detection bias. Mortality at hospital discharge was lower in the NIV weaning group compared to the invasive weaning group [pooled odds ratio (OR) 0.58, 95% highest density interval (HDI) 0.29–0.89]. Subgroup analyses showed lower pooled mortality at hospital discharge rates in NIV weaning than those in the control group in chronic obstructive pulmonary disease (COPD) patients (pooled OR 0.43, 95% HDI 0.13–0.81) and the effect is less certain in the mixed ICU population (pooled OR 0.88, 95% HDI 0.25–1.48). NIV weaning reduced the duration of invasive ventilation in patients [standardised mean difference (SMD) − 1.34, 95% HDI − 1.92 to − 0.77] and ICU length of stay (SMD − 0.70, 95% HDI − 0.94 to − 0.46). Reported rates of ventilator associated pneumonia (VAP) were lower in the NIV group. NIV weaning did not reduce overall hospital length of stay or long-term mortality. There were insufficient data to compare other adverse events and health-related quality of life.

Conclusions

The use of NIV in weaning from mechanical ventilation decreases hospital mortality, the incidence of VAP and ICU length of stay. NIV as a weaning strategy appears to be most beneficial in patients with COPD.

Keywords

References

  1. ICNARC (2016) Key statistics from the Case Mix Programme — adult, general critical care units. https://www.icnarc.org/Our-Audit/Audits/Cmp/Reports/Summary-Statistics. Accessed 29 Sept 2018
  2. Esteban A, Anzueto A, Frutos F, Alía I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguía C, Nightingale P (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345–355
    • View reference on publisher's website
  3. Jeong BH, Ko MG, Nam J, Yoo H, Chung CR, Suh GY, Jeon K (2015) Differences in clinical outcomes according to weaning classifications in medical intensive care units. PLoS One 10:e0122810
    • View reference on publisher's website
  4. Girard TD, Alhazzani W, Kress JP, Ouellette DR, Schmidt GA, Truwit JD, Burns SM, Epstein SK, Esteban A, Fan E, Ferrer M, Fraser GL, Gong MN, Hough CL, Mehta S, Nanchal R, Patel S, Pawlik AJ, Schweickert WD, Sessler CN, Strom T, Wilson KC, Morris PE (2017) An Official American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: liberation from mechanical ventilation in critically ill adults. rehabilitation protocols, ventilator liberation protocols, and cuff leak tests. Am J Respir Crit Care Med 195:120–133
    • View reference on publisher's website
  5. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, Pearl R, Silverman H, Stanchina M, Vieillard-Baron A, Welte T (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056
    • View reference on publisher's website
  6. Landsberg JW (2018) Chapter 19e—Liberation from mechanical ventilation. In: Landsberg JW (ed) Clinical practice manual for pulmonary and critical care medicine. Elsevier, Philadelphia, pp e1–e13
  7. Khamiees M, Raju P, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA (2001) Predictors of extubation outcome in patients who have successfully completed a spontaneous breathing trial. Chest 120:1262–1270
    • View reference on publisher's website
  8. Béduneau G, Pham T, Schortgen F, Piquilloud L, Zogheib E, Jonas M, Grelon F, Runge I, Terzi N, Grangé S, Barberet G, Guitard P-G, Frat J-P, Constan A, Chretien J-M, Mancebo J, Mercat A, Richard J-CM, Brochard L (2017) Epidemiology of weaning outcome according to a new definition. WIND Study 195:772–783
  9. Osadnik CR, Tee VS, Carson-Chahhoud KV, Picot J, Wedzicha JA, Smith BJ (2017) Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004104.pub4
    • View reference on publisher's website
  10. Frutos-Vivar F, Ferguson ND, Esteban A, Epstein SK, Arabi Y, Apezteguía C, González M, Hill NS, Nava S, D’Empaire G, Anzueto A (2006) Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest 130:1664–1671
    • View reference on publisher's website
  11. Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, Navalesi P, Antonelli M, Brozek J, Conti G, Ferrer M, Guntupalli K, Jaber S, Keenan S, Mancebo J, Mehta S, Raoof S (2017) Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 50(2):1602426. https://doi.org/10.1183/13993003.02426-2016
    • View reference on publisher's website
  12. Burns KE, Adhikari NK, Keenan SP, Meade MO (2010) Noninvasive positive pressure ventilation as a weaning strategy for intubated adults with respiratory failure. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004127.pub2
    • View reference on publisher's website
  13. Perkins GD, Mistry D, Gates S, et al. (2018) Effect of protocolized weaning with early extubation to noninvasive ventilation vs invasive weaning on time to liberation from mechanical ventilation among patients with respiratory failure the breathe randomized clinical Trial. JAMA. https://doi.org/10.1001/jama.2018.13763
    • View reference on publisher's website
  14. Gelman ACJ, Stern HS, Rubin DB (2003) Bayesian data analysis. Chapman and Hall/CRC, Boca Raton
  15. Lv H (1981) Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat 6:107–128
    • View reference on publisher's website
  16. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472
    • View reference on publisher's website
  17. Burns KE, Adhikari NK, Meade MO (2003) Noninvasive positive pressure ventilation as a weaning strategy for intubated adults with respiratory failure. Cochrane Database Syst Rev (4):CD004127
  18. Keenan SP, Sinuff T, Burns KE, Muscedere J, Kutsogiannis J, Mehta S, Cook DJ, Ayas N, Adhikari NK, Hand L, Scales DC, Pagnotta R, Lazosky L, Rocker G, Dial S, Laupland K, Sanders K, Dodek P (2011) Clinical practice guidelines for the use of noninvasive positive-pressure ventilation and noninvasive continuous positive airway pressure in the acute care setting. CMAJ 183:E195–E214
    • View reference on publisher's website
  19. Girault C, Daudenthun I, Chevron V, Tamion F, Leroy J, Bonmarchand G (1999) Noninvasive ventilation as a systematic extubation and weaning technique in acute-on-chronic respiratory failure: a prospective, randomized controlled study. Am J Respir Crit Care Med 160:86–92
    • View reference on publisher's website
  20. Chen J, Qiu D, Tao D (2001) Time for extubation and sequential noninvasive mechanical ventilation in COPD patients with exacerbated respiratory failure who received invasive ventilation. Zhonghua Jie He He Hu Xi Za Zhi 24:99–100
  21. Wang X, Du X, Zhang W (2004) Observation of the results and discussion on the timing of transition from invasive mechanical ventilation to noninvasive ventilation in COPD patients with concomitant acute respiratory failure. Shandong Med J 44:4–6
  22. Wang C, Zhan QY, Cao ZX, Wei LQ, Cheng ZZ, Liu S, Zhang JI, Chen RC, Luo Q, Niu SF, Zhu L, Wu DW, Fang BM, Wu TH, Wang CZ, Ablinimit A, Liu YN (2005) Pulmonary infection control window in treatment of severe respiratory failure of chronic obstructive pulmonary diseases: a prospective, randomized controlled, multi-centred study. Chin Med J 118:1589–1594
  23. Liu L, Qiu HB, Zheng RQ, Yang Y (2005) Prospective randomized controlled clinical study of early use of noninvasive positive pressure ventilation in the treatment for acute exacerbation of chronic obstructive pulmonary disease. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 17:477–480
  24. Zou SH, Zhou R, Chen P, Luo H, Xiang XD, Lu YD, Zhu LY (2006) Application of sequential noninvasive following invasive mechanical ventilation in COPD patients with severe respiratory failure by investigating the appearance of pulmonary-infection-control-window. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31:120–124
  25. Trevisan CE, Vieira SR, Research Group in Mechanical Ventilation Weaning (2008) Noninvasive mechanical ventilation may be useful in treating patients who fail weaning from invasive mechanical ventilation: a randomized clinical trial. Crit Care 12:R51
    • View reference on publisher's website
  26. Charra B, Hachimi A, Benslama A, Motaouakkil S (2009) Contribution of noninvasive ventilation in the precocious extubation in the medical ICU. Crit Care 13:S5–S6
    • View reference on publisher's website
  27. Girault C, Bubenheim M, Abroug F, Diehl JL, Elatrous S, Beuret P, Richecoeur J, L’Her E, Hilbert G, Capellier G, Rabbat A, Besbes M, Guérin C, Guiot P, Bénichou J, Bonmarchand G, VENISE Trial Group (2011) Noninvasive ventilation and weaning in patients with chronic hypercapnic respiratory failure: a randomized multicenter trial. Am J Respir Crit Care Med 184:672–679
    • View reference on publisher's website
  28. Mohamed AI (2012) Elective early noninvasive ventilation as a weaning method of COPD patients. Eur Respir J 40(Suppl 56):P2041
  29. Vaschetto R, Turucz E, Dellapiazza F, Guido S, Colombo D, Cammarota G, Della Corte F, Antonelli M, Navalesi P (2012) Noninvasive ventilation after early extubation in patients recovering from hypoxemic acute respiratory failure: a single-centre feasibility study. Intensive Care Med 38:1599–1606
  30. Rong F (2012) Application of treating chronic obstructive pulmonary disease patients with respiratory failure with the sequential noninvasive and invasive ventilation. J Bengbu Med Coll 37:442–444
  31. Carron M, Rossi S, Carollo C, Ori C (2014) Comparison of invasive and noninvasive positive pressure ventilation delivered by means of a helmet for weaning of patients from mechanical ventilation. J Crit Care 29:580–585
    • View reference on publisher's website
  32. Mishra M, Chaudhri S, Tripathi V, Verma AK, Sampath A, Chauhan NK (2014) Weaning of mechanically ventilated chronic obstructive pulmonary disease patients by using non-invasive positive pressure ventilation: a prospective study. Lung India 31:127–133
    • View reference on publisher's website
  33. Wang X, Xu S, Liu G, Caikai S (2014) Study of timing of invasive and noninvasive sequential ventilation in patients with acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 26:330–334
  34. Tawfeek ME, Elnabtity AMA (2012) Noninvasive proportional assist ventilation may be useful in weaning patients who failed spontaneous breathing trial. Egypt J Anaesth 28:89–94
    • View reference on publisher's website
  35. Guo F, Xu S, Liu G, Wang X (2015) An investigation of the efficacy of invasive-noninvasive sequential mechanical ventilation in senile patients with severe community-acquired pneumonia. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 27:595–600
  36. Prasad SB, Chaudhry D, Khanna R (2009) Role of noninvasive ventilation in weaning from mechanical ventilation in patients of chronic obstructive pulmonary disease: an Indian experience. Indian J Crit Care Med 13:207–212
    • View reference on publisher's website
  37. El-Shimy WS, Barima MA, El-Magd GHA, Mansour SA (2013) Non invasive ventilation versus synchronized intermittent mandatory ventilation with pressure support in weaning of COPD patients: comparative study. Egypt J Chest Dis Tuberc 62:159–166
    • View reference on publisher's website
  38. Ferrer M, Esquinas A, Arancibia F, Bauer TT, Gonzalez G, Carrillo A, Rodriguez-Roisin R, Torres A (2003) Noninvasive ventilation during persistent weaning failure: a randomized controlled trial. Am J Respir Crit Care Med 168:70–76
    • View reference on publisher's website
  39. Nava S, Ambrosino N, Clini E, Prato M, Orlando G, Vitacca M, Brigada P, Fracchia C, Rubini F (1998) Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized, controlled trial. Ann Intern Med 128:721–728
    • View reference on publisher's website
  40. Trevisan CE, Vieira SR, Research Group in Mechanical Ventilation Weaning (2008) Noninvasive mechanical ventilation may be useful in treating patients who fail weaning from invasive mechanical ventilation: a randomized clinical trial. Crit Care 12:R51
    • View reference on publisher's website
  41. Chaudhri S, Mishra M, Verma A, Sampath A, Rai O (2009) Utility of non invasive pressure ventilation (NIPPV) for weaning COPD patients from invasive mechanical ventilation (IMV). In: European Respiratory Society Annual Congress, Vienna, Austria, 12–16 September 2009
  42. Laiq N, Khan RA, Malik A (2013) Non-invasive positive pressure ventilation facilitates early extubation in post operative cardiac patients. J Postgrad Med Inst 27(4):361–365
  43. Matic I, Sakic-Zdravcevic K, Jurjevic M (2007) Comparison of invasive and noninvasive mechanical ventilation for patients with chronic obstructive pulmonary disease: randomized prospective study. Period Biologorum 109:137–145
  44. Burns KE, Meade MO, Premji A, Adhikari NK (2014) Noninvasive ventilation as a weaning strategy for mechanical ventilation in adults with respiratory failure: a Cochrane systematic review. CMAJ 186:E112–E122
    • View reference on publisher's website
  45. Funk G-C, Bauer P, Burghuber OC, Fazekas A, Hartl S, Hochrieser H, Schmutz R, Metnitz P (2013) Prevalence and prognosis of COPD in critically ill patients between 1998 and 2008. Eur Respir J 41(4):792–799. https://doi.org/10.1183/09031936.00226411
    • View reference on publisher's website
  46. Vincent J-L, Marshall JC, Ñamendys-Silva SA, François B, Martin-Loeches I, Lipman J, Reinhart K, Antonelli M, Pickkers P, Njimi H, Jimenez E, Sakr Y (2014) Assessment of the worldwide burden of critical illness: the Intensive Care Over Nations (ICON) audit. Lancet Respir Med 2:380–386
    • View reference on publisher's website
  47. Rello J, Rodriguez A, Torres A, Roig J, Sole-Violan J, Garnacho-Montero J, de la Torre MV, Sirvent JM, Bodi M (2006) Implications of COPD in patients admitted to the intensive care unit by community-acquired pneumonia. Eur Respir J 27(6):1210–1216. https://doi.org/10.1183/09031936.06.00139305
    • View reference on publisher's website
  48. Mayr VD, Dünser MW, Greil V, Jochberger S, Luckner G, Ulmer H, Friesenecker BE, Takala J, Hasibeder WR (2006) Causes of death and determinants of outcome in critically ill patients. Crit Care 10(6):R154
    • View reference on publisher's website
  49. Orban J-C, Walrave Y, Mongardon N, Allaouchiche B, Argaud L, Aubrun F, Barjon G, Constantin J-M, Dhonneur G, Durand-Gasselin J, Dupont H, Genestal M, Goguey C, Goutorbe P, Guidet B, Hyvernat H, Jaber S, Lefrant J-Y, Mallédant Y, Morel J, Ouattara A, Pichon N, Guérin Robardey A-M, Sirodot M, Theissen A, Wiramus S, Zieleskiewicz L, Leone M, Ichai C (2017) Causes and characteristics of death in intensive care units: a prospective multicenter study. Anesthesiology 126:882–889
    • View reference on publisher's website
  50. Blackwood B, Alderdice F, Burns K, Cardwell C, Lavery G, O’Halloran P (2011) Use of weaning protocols for reducing duration of mechanical ventilation in critically ill adult patients: Cochrane systematic review and meta-analysis. BMJ 342:c7237. https://doi.org/10.1136/bmj.c7237
    • View reference on publisher's website
  51. Langer M, Cigada M, Mandelli M, Mosconi P, Tognoni G (1987) Early onset pneumonia: a multicenter study in intensive care units. Intensive Care Med 13:342–346
  52. Chastre J, Fagon J-Y (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903
    • View reference on publisher's website
  53. Lightowler JV, Wedzicha JA, Elliott MW, Ram FSF (2003) Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ 326:185
    • View reference on publisher's website
  54. Ibrahim JG, Chen M-H, Chu H (2012) Bayesian methods in clinical trials: a Bayesian analysis of ECOG trials E1684 and E1690. BMC Med Res Methodol 12:183
    • View reference on publisher's website
  55. Babapulle MN, Joseph L, Bélisle P, Brophy JM, Eisenberg MJ (2004) A hierarchical Bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet 364:583–591
    • View reference on publisher's website
  56. Blackwood B, Ringrow S, Clarke M, Marshall J, Rose L, Williamson P, McAuley D (2015) Core Outcomes in Ventilation Trials (COVenT): protocol for a core outcome set using a Delphi survey with a nested randomised trial and observational cohort study. Trials 16:368
    • View reference on publisher's website
  57. Ringrow S, McAuley D, Clarke M, Marshall J, Connolly B, Rose L, Blackwood B (2017) S133 A core outcome set for mechanical ventilation trials: the covent study. Thorax 72:A79–A80
  58. Hatch R, Young D, Barber V, Harrison DA, Watkinson P (2017) The effect of postal questionnaire burden on response rate and answer patterns following admission to intensive care: a randomised controlled trial. BMC Med Res Methodol 17:49
    • View reference on publisher's website
  59. Griffiths JA, Morgan K, Barber VS, Young JD (2008) Study protocol: the Intensive Care Outcome Network (‘ICON’) study. BMC Health Serv Res 8:132
    • View reference on publisher's website
  60. Reay H, Arulkumaran N, Brett SJ (2014) Priorities for future intensive care research in the UK: results of a James Lind Alliance Priority Setting Partnership. J Intensive Care Soc 15:288–296
    • View reference on publisher's website
  61. Lv Y, Lv Q, Lv Q, Lai T (2017) Pulmonary infection control window as a switching point for sequential ventilation in the treatment of COPD patients: a meta-analysis. Int J Chron Obstruct Pulmon Dis 12:1255–1267
    • View reference on publisher's website

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement