Log in | Register

Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review

Massimo Zambon| Massimiliano Greco| Speranza Bocchino| Luca Cabrini| Paolo Federico Beccaria| Alberto Zangrillo
Systematic Review
Volume 43, Issue 1 / January , 2017

Pages 29 - 38

Abstract

Purpose

Diaphragmatic dysfunction (DD) has a high incidence in critically ill patients and is an under-recognized cause of respiratory failure and prolonged weaning from mechanical ventilation. Among different methods to assess diaphragmatic function, diaphragm ultrasonography (DU) is noninvasive, rapid, and easy to perform at the bedside. We systematically reviewed the current literature assessing the usefulness and accuracy of DU in intensive care unit (ICU) patients.

Methods

Pubmed, Cochrane Database of Systematic Reviews, Embase, Scopus, and Google Scholar Databases were searched for pertinent studies. We included all original, peer-reviewed studies about the use of DU in ICU patients.

Results

Twenty studies including 875 patients were included in the final analysis. DU was performed with different techniques to measure diaphragmatic inspiratory excursion, thickness of diaphragm (Tdi), and thickening fraction (TF). DU is feasible, highly reproducible, and allows one to detect diaphragmatic dysfunction in critically ill patients. During weaning from mechanical ventilation and spontaneous breathing trials, both diaphragmatic excursion and diaphragmatic thickening measurements have been used to predict extubation success or failure. Optimal cutoffs ranged from 10 to 14 mm for excursion and 30–36 % for thickening fraction. During assisted mechanical ventilation, diaphragmatic thickening has been found to be an accurate index of respiratory muscles workload. Observational studies suggest DU as a reliable method to assess diaphragm atrophy in patients undergoing mechanical ventilation.

Conclusions

Current literature suggests that DU could be a useful and accurate tool to detect diaphragmatic dysfunction in critically ill patients, to predict extubation success or failure, to monitor respiratory workload, and to assess atrophy in patients who are mechanically ventilated.

Keywords

References

  1. Demoule A, Jung B, Prodanovic H et al (2013) Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact-a prospective study. Am J Respir Crit Care Med 188:213–219
    • View reference on publisher's website
    • View reference on PubMed
  2. Levine S, Nguyen T, Taylor N et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335
    • View reference on publisher's website
    • View reference on PubMed
  3. Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 169:336–341
    • View reference on publisher's website
    • View reference on PubMed
  4. Efthimiou J, Butler J, Woodham C et al (1991) Diaphragm paralysis following cardiac surgery: role of phrenic nerve cold injury. Ann Thorac Surg 52:1005–1008
    • View reference on publisher's website
    • View reference on PubMed
  5. DeVita MA, Robinson LR, Rehder J et al (1993) Incidence and natural history of phrenic neuropathy occurring during open heart surgery. Chest 103:850–856
    • View reference on publisher's website
    • View reference on PubMed
  6. Ford GT, Whitelaw WA, Rosenal TW et al (1983) Diaphragm function after upper abdominal surgery in humans. Am Rev Respir Dis 127:431–436
    • View reference on publisher's website
    • View reference on PubMed
  7. Erice F, Fox GS, Salib YM et al (1993) Diaphragmatic function before and after laparoscopic cholecystectomy. Anesthesiology 79:966–975
    • View reference on publisher's website
    • View reference on PubMed
  8. Doorduin J, van Hees HWH, van der Hoeven JG et al (2013) Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med 187:20–27
    • View reference on publisher's website
    • View reference on PubMed
  9. Ueki J, De Bruin PF, Pride NB (1995) In vivo assessment of diaphragm contraction by ultrasound in normal subjects. Thorax 50:1157–1161
    • View reference on publisher's website
    • View reference on PubMed
  10. Boussuges A, Gole Y, Blanc P (2009) Diaphragmatic motion studied by M-mode ultrasonography: methods, reproducibility, and normal values. Chest 135:391–400
    • View reference on publisher's website
    • View reference on PubMed
  11. Gottesman E, McCool FD (1997) Ultrasound evaluation of the paralyzed diaphragm. Am J Respir Crit Care Med 155:1570–1574
    • View reference on publisher's website
    • View reference on PubMed
  12. Matamis D, Soilemezi E, Tsagourias M et al (2013) Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med 39:801–810
  13. Zambon M, Cabrini L, Beccaria P et al (2013) Ultrasound in critically ill patients: focus on diaphragm. Intensive Care Med 39:986
  14. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2 Group. (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536
    • View reference on publisher's website
    • View reference on PubMed
  15. Dinino E, Gartman EJ, Sethi JM et al (2014) Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax 69:431–435
    • View reference on publisher's website
  16. Grosu HB, Lee YI, Lee J et al (2012) Diaphragm muscle thinning in patients who are mechanically ventilated. Chest 142:1455–1460
    • View reference on publisher's website
    • View reference on PubMed
  17. Cartwright MS, Kwayisi G, Griffin LP et al (2013) Quantitative neuromuscular ultrasound in the intensive care unit. Muscle Nerve 47:255–259
    • View reference on publisher's website
    • View reference on PubMed
  18. Baldwin CE, Bersten AD (2014) Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated. Phys Ther 94:68–82
    • View reference on publisher's website
    • View reference on PubMed
  19. Vivier E, Mekontso Dessap A, Dimassi S et al (2012) Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med 38:796–803
  20. Kim WY, Suh HJ, Hong S-B et al (2011) Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med 39:2627–2630
    • View reference on publisher's website
    • View reference on PubMed
  21. Urvoas E, Pariente D, Fausser C et al (1994) Diaphragmatic paralysis in children: diagnosis by TM-mode ultrasound. Pediatr Radiol 24:564–568
    • View reference on publisher's website
    • View reference on PubMed
  22. Jiang J-R, Tsai T-H, Jerng J-S et al (2004) Ultrasonographic evaluation of liver/spleen movements and extubation outcome. Chest 126:179–185
    • View reference on publisher's website
    • View reference on PubMed
  23. Lerolle N, Guérot E, Dimassi S et al (2009) Ultrasonographic diagnostic criterion for severe diaphragmatic dysfunction after cardiac surgery. Chest 135:401–407
    • View reference on publisher's website
    • View reference on PubMed
  24. Balaji S, Kunovsky P, Sullivan I (1990) Ultrasound in the diagnosis of diaphragmatic paralysis after operation for congenital heart disease. Br Heart J 64:20–23
    • View reference on publisher's website
    • View reference on PubMed
  25. Sanchez de Toledo J, Munoz R, Landsittel D et al (2010) Diagnosis of abnormal diaphragm motion after cardiothoracic surgery: ultrasound performed by a cardiac intensivist vs. fluoroscopy. Congenit Heart Dis 5:565–572
    • View reference on publisher's website
    • View reference on PubMed
  26. Goligher EC, Laghi F, Detsky ME et al (2015) Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med 41(4):642–649
  27. Goligher EC, Fan E, Herridge MS et al (2015) Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med 192(9):1080–1088
    • View reference on publisher's website
    • View reference on PubMed
  28. Valette X, Seguin A, Daubin C et al (2015) Diaphragmatic dysfunction at admission in intensive care unit: the value of diaphragmatic ultrasonography. Intensive Care Med 41(3):557–559
  29. Mariani LF, Bedel J, Gros A et al (2015) Ultrasonography for screening and follow-up of diaphragmatic dysfunction in the ICU: a pilot study. J Intensive Care Med 31:338–343
    • View reference on publisher's website
    • View reference on PubMed
  30. Umbrello M, Formenti P, Longhi D et al (2015) Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care 19:161
    • View reference on publisher's website
    • View reference on PubMed
  31. Zambon M, Beccaria P, Matsuno J et al (2016) Mechanical ventilation and diaphragmatic atrophy in critically ill patients: an ultrasound study. Crit Care Med 44:1347–1352
    • View reference on publisher's website
    • View reference on PubMed
  32. Schepens T, Verbrugghe W, Dams K et al (2015) The course of diaphragm atrophy in ventilated patients assessed with ultrasound: a longitudinal cohort study. Crit Care 19:422
    • View reference on publisher's website
    • View reference on PubMed
  33. Ferrari G, De Filippi G, Elia F et al (2014) Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation. Crit Ultrasound J 6(1):8
    • View reference on publisher's website
    • View reference on PubMed
  34. Haji K, Royse A, Tharmaraj D et al (2015) Diaphragmatic regional displacement assessed by ultrasound and correlated to subphrenic organ movement in the critically ill patients—an observational study. J Crit Care 30:439.e7–13
  35. Jaber S, Petrof BJ, Jung B et al (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371
    • View reference on publisher's website
    • View reference on PubMed
  36. Wait JL, Nahormek PA, Yost WT et al (1989) Diaphragmatic thickness-lung volume relationship in vivo. J Appl Physiol 67:1560–1568
    • View reference on PubMed
  37. Houston JG, Angus RM, Cowan MD et al (1994) Ultrasound assessment of normal hemidiaphragmatic movement: relation to inspiratory volume. Thorax 49:500–503
    • View reference on publisher's website
    • View reference on PubMed

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement