Log in | Register

Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsis-associated left ventricular dysfunction

Rochus Witthaut| Christian Busch| Peter Fraunberger| Autar Walli| Dietrich Seidel| Günter Pilz| Ralph Stuttmann| Norbert Speichermann| Ljifane Verner| Karl Werdan
Original
Volume 29, Issue 10 / October , 2003

Pages 1696 - 1702

Abstract

Objective

Interest has recently focused on the use of neurohormonal markers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) as indices of left ventricular systolic dysfunction and prognosis in heart failure. Also, peptides belonging to the interleukin-6 (IL-6) family have been shown to induce ANP and BNP secretion. We hypothesized that BNP and ANP spillover in the peripheral circulation reflects left ventricular dysfunction and IL-6 production in septic shock.

Design and setting

Retrospective, clinical study in the medical intensive care unit of a university hospital.

Patients and participants

17 patients with septic shock and 19 control subjects.

Interventions

Collection of clinical and demographic data in relation to ANP, BNP, IL-6, and soluble TNF receptors (sTNF-R-p55, sTNF-R-p75) in plasma over a period of 4 days.

Measurements and results

In septic shock we found a significant increase in ANP (82.7±9.9 vs. 14.9±1.2 pg/ml) and BNP (12.4±3.6 vs. 5.5±0.7 pg/ml). Plasma ANP peaked together with IL-6. Peaks of ANP and IL-6 were significantly correlated (r=0.73; p<0.01). BNP was inversely correlated to cardiac index (r=–0.56; p<0.05).

Conclusions

ANP and BNP increase significantly in patients with septic shock. BNP reflects left ventricular dysfunction. ANP is related to IL-6 production rather than to cardiovascular dysfunction.

Keywords

References

  1. Nakao K, Ogawa Y, Suga S, Imura H (1992) Molecular biology and biochemistry of the natriuretic system. I. Natriuretic peptides. J Hypertens 10:907–912
    • View reference on PubMed
  2. Bold AJ de (1985) Atrial natriuretic factor: a hormone produced by the heart. Science 230:767–770
    • View reference on PubMed
  3. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81
    • View reference on publisher's website
    • View reference on PubMed
  4. Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumura K, Mukoyama M, Nakao K (1994) Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90:195–203
    • View reference on PubMed
  5. Mukoyama M, Nakao K, Saito Y, Ogawa Y, Hosoda K, Suga S, Shirakami G, Jougasaki M, Imura H (1990) Increased human brain natriuretic peptide in congestive heart failure. N Engl J Med 313:757–758
  6. Gottlieb S, Kukin ML, Ahern D, Packer M (1989) Prognostic importance of atrial natriuretic peptide in patients with chronic heart failure. J Am Coll Cardiol 13:153–159
    • View reference on PubMed
  7. Arakawa N, Nakamura M, Aoki H, Hiramori K (1996) Plasma brain natriuretic peptide concentrations predict survival after acute myocardial infarction. J Am Coll Cardiol 27:1656–1661
    • View reference on publisher's website
    • View reference on PubMed
  8. Hall C, Rouleau JL, Moye L, de Champlain J, Bichet D, Klein M, Sussex B, Packer M, Rouleau J, Arnold MO, Lamas GA, Sestier F, Gottlieb S, Wun CC, Pfeffer MA (1994) N terminal proatrial natriuretic factor. An independent predictor of long term prognosis after myocardial infarction. Circulation 89:1934–1942
    • View reference on PubMed
  9. Thaik CM, Calderone A, Takahashi N, Colucci WS (1995) Interleukin-1β modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 96:1093–1099
    • View reference on PubMed
  10. He Q, LaPointe MC (1999) Interleukin-1β regulation of the human brain natriuretic peptide promotor involves Ras-, Rac-, and p38 kinase-dependent pathways in cardiac myocytes. Hypertension 33:283–289
    • View reference on PubMed
  11. Kuwahara K, Saito Y, Harada M, Ishikawa M, Ogawa E, Miyamoto Y, Hamanaka I, Kamitani S, Kajiyama N, Takahashi N, Nakagawa O, Masuda I, Nakao K (1999) Involvement of cardiotrophin-1 in cardiac myocyte-nonmyocyte interactions during hypertrophy of rat cardiac myocytes in vitro. Circulation 100:1116–1124
    • View reference on PubMed
  12. MacGowan GA, Mann DL, Kormos RL, Feldman AM, Murali S (1997) Circulating interleukin-6 in severe heart failure. Am J Cardiol 79:1128–1131
    • View reference on publisher's website
    • View reference on PubMed
  13. Talwar S, Downie PF, Squire IB (1999) An immunolumino-metric assay for cardiotrophin-1: a newly identified cytokine is present in normal human plasma and is increased in heart failure. Biochem Biophys Res Commun 261:567–571
    • View reference on publisher's website
    • View reference on PubMed
  14. Tsutamoto T, Hisanga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabushi N, Sawaki M, Kinoshita M (1998) Interleukin-6 spillover in the peripheral circulation increase with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398
    • View reference on PubMed
  15. Talwar S, Squire IB, Downie PF, Davies JE, Ng LL (2000) Plasma N terminal pro-brain natriuretic peptide and cardiotrophin 1 are raised in unstable angina. Heart 84:421–424
    • View reference on publisher's website
    • View reference on PubMed
  16. Torre-Amione G, Kapadia S, Benedct C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular dysfunction. J Am Coll Cardiol 27:1201–1206
    • View reference on PubMed
  17. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92:2303–2312
    • View reference on PubMed
  18. Werdan K (1998) The activated immune system in congestive heart failure-from dropsy to the cytokine paradigm. J Intern Med 243:87–92
    • View reference on publisher's website
    • View reference on PubMed
  19. Price S, Anning PB, Mitchell JA, Evans TW (1999) Myocardial dysfunction in sepsis: mechanisms and therapeutic implications. Eur Heart J 20:715–724
    • View reference on publisher's website
    • View reference on PubMed
  20. Müller-Werdan U, Werdan K (1999) Septic cardiomyopathy. Curr Opin Crit Care 5:415–421
  21. Parker MM, Shelhamer JH, Natanson C, Alling DW, Parillo JE (1989) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15:923–929
  22. Pilz G, Fateh-Moghadam S, Viell B, Bujdoso O, Döring G, Marget W, Werdan K (1993) Supplemental immunoglobulin therapy in sepsis and septic shock-comparison of mortality under treatment with polyvalent i.v. immunoglobulin versus placebo: protocol of a multicenter, randomized, prospective, double-blind trial. Theor Surg 8:61–83
  23. Werdan K, Pilz G, and the SBITS Study Group (1998). Polyvalent immune globulins. Shock [Suppl] 7:1918
  24. Bone R (1996) Sir Isaac Newton, sepsis, SIRS and CARS. Crit Care Med 24:1125–1128
  25. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee (1992) Definitions for sepsis and multiple organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874
    • View reference on PubMed
  26. Elebute EA, Stoner HB (1983) The grading of sepsis. Br J Surg 70:29–31
  27. Knaus WA, Draper EA, Wagner DP, Zimmermann JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829
    • View reference on PubMed
  28. Gerbes AL, Witthaut R, Gülberg V, Thibault G, Bilzer M, Jüngst D (1992) Role of the liver in splanchnic extraction of atrial natriuretic factor in the rat. Hepatology 16:790–793
    • View reference on PubMed
  29. Fraunberger P, Pfeiffer M, Cremer P, Holler E, Nagel D, Dehart I, Thein M, Walli AK, Seidel D (1992) Validation of an automated enzyme immunoassay for interleukin-6 for routine clinical use. Clin Chem Lab Med 36:797–801
  30. Baim DS, Grossman W (1996) Cardiac catheterization, angiography, and intervention, 5th edn. Williams & Wilkins, Baltimore
  31. Muders F, Kromer EP, Griese DP, Pfeifer M, Hense HW, Riegger GAJ, Elsner D (1997) Evaluation of plasma natriuretic peptides as markers for left ventricular dysfunction. Am Heart J 134:442–449
    • View reference on PubMed
  32. Bakker J, Vincent JL (1993) Effects of norepinephrine and dobutamine on oxygen transport and consumption in a dog model of endotoxic shock. Crit Care Med 21:1248–1249
    • View reference on PubMed
  33. Pilz G, R Appel, P McGinn (1993) Calculation of the left ventricular stroke work index. Crit Care Med 21:1248–1249
    • View reference on PubMed
  34. Raine AEG, Erne P, Bürgisser E, Müller FB, Bolli P, Burkart F, Bühler FR (1986) Atrial natriuretic peptide and atrial pressure in patients with congestive heart failure. N Engl J Med 315:533–537
    • View reference on PubMed
  35. Hama N, Ito H, Shirakami G, Nakagawa O, Suga S, Ogawa Y, Masuda I (1995) Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 92:1558–1564
    • View reference on PubMed
  36. Ogawa T, Linz W, Stevenson M, Bruneau BG, de Bold MLK, Chen JH, Eid H, Schölkens BA, de Bold AJ (1996) Evidence for load dependent and load independent determinants of cardiac natriuretic peptide production. Circulation 93:2059–2067
    • View reference on PubMed
  37. Edwards BS, Zimmermann RS, Schwab TR, Heublin DM, Burnett JC (1988) Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 62:191–195
    • View reference on PubMed
  38. Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE (1988) Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock. Chest 93:903–910
    • View reference on PubMed
  39. Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, and Ogawa S (1999) Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84:1127–1136
    • View reference on PubMed
  40. Tsuruda T, Jougaschi M, Boerrigter G, Huntley BK, Chen HH, Dàssoro AB, Lu SC, Sarson AM, Cataliotti A, Burnett JC Jr (2002) Cardiotrophin-1 stimulation of cardiac fibroblast growth. Roles for glycoprotein 130/ leukemia inhibitory factor receptor and the endothelin type A receptor. Circ Res 90:128–134
    • View reference on publisher's website
    • View reference on PubMed

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement