Log in | Register

AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin

Marine Flechet| Fabian Güiza| Miet Schetz| Pieter Wouters| Ilse Vanhorebeek| Inge Derese| Jan Gunst| Isabel Spriet| Michaël Casaer| Greet Van den Berghe| Geert Meyfroidt
Original
Volume 43, Issue 6 / June , 2017

Pages 764 - 773

Abstract

Purpose

Early diagnosis of acute kidney injury (AKI) remains a major challenge. We developed and validated AKI prediction models in adult ICU patients and made these models available via an online prognostic calculator. We compared predictive performance against serum neutrophil gelatinase-associated lipocalin (NGAL) levels at ICU admission.

Methods

Analysis of the large multicenter EPaNIC database. Model development (n = 2123) and validation (n = 2367) were based on clinical information available (1) before and (2) upon ICU admission, (3) after 1 day in ICU and (4) including additional monitoring data from the first 24 h. The primary outcome was a comparison of the predictive performance between models and NGAL for the development of any AKI (AKI-123) and AKI stages 2 or 3 (AKI-23) during the first week of ICU stay.

Results

Validation cohort prevalence was 29% for AKI-123 and 15% for AKI-23. The AKI-123 model before ICU admission included age, baseline serum creatinine, diabetes and type of admission (medical/surgical, emergency/planned) and had an AUC of 0.75 (95% CI 0.75–0.75). The AKI-23 model additionally included height and weight (AUC 0.77 (95% CI 0.77–0.77)). Performance consistently improved with progressive data availability to AUCs of 0.82 (95% CI 0.82–0.82) for AKI-123 and 0.84 (95% CI 0.83–0.84) for AKI-23 after 24 h. NGAL was less discriminant with AUCs of 0.74 (95% CI 0.74–0.74) for AKI-123 and 0.79 (95% CI 0.79–0.79) for AKI-23.

Conclusions

AKI can be predicted early with models that only use routinely collected clinical information and outperform NGAL measured at ICU admission. The AKI-123 models are available at

  • http://akipredictor.com/
  • .

    Trial registration Clinical Trials.gov NCT00512122

    Keywords

    References

    1. Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380:756–766. doi:10.1016/S0140-6736(11)61454-2
      • View reference on publisher's website
      • View reference on PubMed
    2. Gunst J, Vanhorebeek I, Casaer MP et al (2013) Impact of early parenteral nutrition on metabolism and kidney injury. J Am Soc Nephrol 24:995–1005. doi:10.1681/ASN.2012070732
      • View reference on publisher's website
      • View reference on PubMed
    3. Joannidis M, Metnitz B, Bauer P et al (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35:1692–1702. doi:10.1007/s00134-009-1530-4
    4. Nisula S, Kaukonen K-M, Vaara ST et al (2013) Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med 39:420–428. doi:10.1007/s00134-012-2796-5
    5. Sutherland SM, Chawla LS, Kane-Gill SL et al (2016) Utilizing electronic health records to predict acute kidney injury risk and outcomes: workgroup statements from the 15th ADQI Consensus Conference. Can J Kidney Heal Dis 3:11. doi:10.1186/s40697-016-0099-4
      • View reference on publisher's website
    6. Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66. doi:10.1056/NEJMra1214243
      • View reference on publisher's website
      • View reference on PubMed
    7. Ostermann M, Joannidis M (2015) Biomarkers for AKI improve clinical practice: no. Intensive Care Med 41:618–622. doi:10.1007/s00134-014-3540-0
    8. Park M, Coca SG, Nigwekar SU et al (2010) Prevention and treatment of acute kidney injury in patients undergoing cardiac surgery: a systematic review. Am J Nephrol 31:408–418. doi:10.1159/000296277
      • View reference on publisher's website
      • View reference on PubMed
    9. Burns KEA, Chu MWA, Novick RJ et al (2005) Perioperative N-acetylcysteine to prevent renal dysfunction in high-risk patients undergoing CABG surgery. JAMA 294:342–350. doi:10.1001/jama.294.3.342
      • View reference on publisher's website
      • View reference on PubMed
    10. Billings FT, Hendricks PA, Schildcrout JS et al (2016) High-dose perioperative atorvastatin and acute kidney injury following cardiac surgery. JAMA 315:877–888. doi:10.1001/jama.2016.0548
      • View reference on publisher's website
      • View reference on PubMed
    11. Garg AX, Kurz A, Sessler DI et al (2014) Perioperative aspirin and clonidine and risk of acute kidney injury: a randomized clinical trial. JAMA 312:2254–2264. doi:10.1001/jama.2014.15284
      • View reference on publisher's website
      • View reference on PubMed
    12. Young P, Bailey M, Beasley R et al (2015) Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit. JAMA 314:1701–1710. doi:10.1001/jama.2015.12334
      • View reference on publisher's website
      • View reference on PubMed
    13. Wilson FP, Shashaty M, Testani J et al (2015) Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial. Lancet 385:1966–1974. doi:10.1016/S0140-6736(15)60266-5
      • View reference on publisher's website
      • View reference on PubMed
    14. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney inter 2(Suppl1):1–138
    15. Joannidis M, Druml W, Forni LG et al (2010) Prevention of acute kidney injury and protection of renal function in the intensive care unit. Intensive Care Med 36:392–411. doi:10.1007/s00134-009-1678-y
    16. Shemin D, Dworkin LD (2011) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for early acute kidney injury. Crit Care Clin 27:379–389. doi:10.1016/j.ccc.2010.12.003
      • View reference on publisher's website
      • View reference on PubMed
    17. Kashani K, Al-Khafaji A, Ardiles T et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25. doi:10.1186/cc12503
      • View reference on publisher's website
      • View reference on PubMed
    18. de Geus HRH, Bakker J, Lesaffre EMEH, le Noble JLML (2011) Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med 183:907–914. doi:10.1164/rccm.200908-1214OC
      • View reference on publisher's website
      • View reference on PubMed
    19. Mishra J, Dent C, Tarabishi R et al (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238. doi:10.1016/S0140-6736(05)74811-X
      • View reference on publisher's website
      • View reference on PubMed
    20. Zhang Z (2015) Biomarkers, diagnosis and management of sepsis-induced acute kidney injury: a narrative review. Hear Lung Vessel 7:64–73
    21. Bagshaw SM, Langenberg C, Haase M et al (2007) Urinary biomarkers in septic acute kidney injury. Intensive Care Med 33:1285–1296. doi:10.1007/s00134-007-0656-5
    22. Mårtensson J, Bell M, Oldner A et al (2010) Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med 36:1333–1340. doi:10.1007/s00134-010-1887-4
    23. Bell M, Larsson A, Venge P et al (2015) Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury. Dis Markers 2015:1–9. doi:10.1155/2015/158658
      • View reference on publisher's website
    24. Prowle JR (2015) Measurement of AKI biomarkers in the ICU: still striving for appropriate clinical indications. Intensive Care Med. doi:10.1007/s00134-015-3662-z
    25. Bellazi R, Zupan B, Bellazzi R, Zupan B (2008) Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 77:81–97. doi:10.1016/j.ijmedinf.2006.11.006
      • View reference on publisher's website
    26. Eagle KA, Lim MJ, Dabbous OH et al (2004) A validated prediction model for all forms of acute coronary syndrome. JAMA 291:2727–2733
      • View reference on publisher's website
      • View reference on PubMed
    27. Casaer MP, Mesotten D, Hermans G et al (2011) Early versus late parenteral nutrition in critically ill adults. N Engl J Med 365:506–517. doi:10.1056/NEJMoa1102662
      • View reference on publisher's website
      • View reference on PubMed
    28. Breiman L (2001) Random forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324
      • View reference on publisher's website
    29. Efron B, Tibshirani R (1997) Improvements on cross-validation: the 632 + bootstrap method. J Am Stat Assoc 92:548–560. doi:10.1080/01621459.1997.10474007
    30. Steyerberg EW, Bleeker SE, Moll HA et al (2003) Internal and external validation of predictive models: a simulation study of bias and precision in small samples. J Clin Epidemiol 56:441–447. doi:10.1016/S0895-4356(03)00047-7
      • View reference on publisher's website
      • View reference on PubMed
    31. Van Hoorde K, Vergouwe Y, Timmerman D et al (2014) Assessing calibration of multinomial risk prediction models. Stat Med 33:2585–2596. doi:10.1002/sim.6114
      • View reference on publisher's website
      • View reference on PubMed
    32. Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. doi:10.1126/science.3287615
      • View reference on publisher's website
      • View reference on PubMed
    33. Leening MJG, Steyerberg EW, Van Calster B et al (2014) Net reclassification improvement and integrated discrimination improvement require calibrated models: relevance from a marker and model perspective. Stat Med 33:3415–3418. doi:10.1002/sim.6133
      • View reference on publisher's website
      • View reference on PubMed
    34. Fitzgerald M, Saville BR, Lewis RJ (2015) Decision curve analysis. JAMA 313:409–410. doi:10.1001/jama.2015.37
      • View reference on publisher's website
      • View reference on PubMed
    35. Steyerberg EW, Vickers AJ, Cook NR et al (2010) Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology 21:128–138. doi:10.1097/EDE.0b013e3181c30fb2.Assessing
      • View reference on publisher's website
      • View reference on PubMed
    36. Pedregosa F, Varoquax G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
    37. Concato J (1993) The risk of determining risk with multivariable models. Ann Intern Med 118:201–210. doi:10.7326/0003-4819-118-3-199302010-00009
      • View reference on publisher's website
      • View reference on PubMed
    38. Hoste EAJ, Bagshaw SM, Bellomo R et al (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41:1411–1423. doi:10.1007/s00134-015-3934-7
    39. Cruz DN, de Cal M, Garzotto F et al (2010) Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med 36:444–451. doi:10.1007/s00134-009-1711-1
    40. Haase M, Bellomo R, Devarajan P et al (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54:1012–1024. doi:10.1053/j.ajkd.2009.07.020
      • View reference on publisher's website
      • View reference on PubMed
    41. Englberger L, Suri RM, Li Z et al (2010) Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Am J Kidney Dis 56:623–631. doi:10.1053/j.ajkd.2010.04.017
      • View reference on publisher's website
      • View reference on PubMed
    42. Bagshaw SM, Bennett M, Haase M et al (2010) Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med 36:452–461. doi:10.1007/s00134-009-1724-9
    43. Zhang A, Cai Y, Wang P et al (2016) Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis. Crit Care 20:41. doi:10.1186/s13054-016-1212-x
      • View reference on publisher's website
      • View reference on PubMed
    44. Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W (2013) Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant 28:254–273. doi:10.1093/ndt/gfs380
      • View reference on publisher's website
      • View reference on PubMed
    45. Schley G, Köberle C, Manuilova E et al (2015) Comparison of plasma and urine biomarker performance in acute kidney injury. PLoS One 10:e0145042. doi:10.1371/journal.pone.0145042
      • View reference on publisher's website
      • View reference on PubMed
    46. Forni LG, Dawes T, Sinclair H, Cheek E, Bewick V, Dennis M et al (2013) Identifying the patient at risk of acute kidney injury: a predictive scoring system for the development of acute kidney injury in acute medical patients. Nephron-Clin Pract 123:143–150
      • View reference on publisher's website
      • View reference on PubMed
    47. Mehta RL, Cerdá J, Burdmann EA et al (2015) International Society of Nephrology’s 0 by 25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385:2616–2643. doi:10.1016/S0140-6736(15)60126-X
      • View reference on publisher's website
      • View reference on PubMed

    Sign In

    Connect with ICM

    Top 5 Articles Editors Picks Supplement