Log in | Register

Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria

Jeremy R. Beitler| Scott A. Sands| Stephen H. Loring| Robert L. Owens| Atul Malhotra| Roger G. Spragg| Michael A. Matthay| B. Taylor Thompson| Daniel Talmor
Original
Volume 42, Issue 9 / September , 2016

Pages 1427 - 1436

Abstract

Purpose

Breath stacking dyssynchrony generates higher tidal volumes than intended, potentially increasing lung injury risk in acute respiratory distress syndrome (ARDS). Lack of validated criteria to quantify breath stacking dyssynchrony contributes to its under-recognition. This study evaluates performance of novel, objective criteria for quantifying breath stacking dyssynchrony (BREATHE criteria) compared to existing definitions and tests if neuromuscular blockade eliminates high-volume breath stacking dyssynchrony in ARDS.

Methods

Airway flow and pressure were recorded continuously for up to 72 h in 33 patients with ARDS receiving volume-preset assist-control ventilation. The flow–time waveform was integrated to calculate tidal volume breath-by-breath. The BREATHE criteria considered five domains in evaluating for breath stacking dyssynchrony: ventilator cycling, interval expiratory volume, cumulative inspiratory volume, expiratory time, and inspiratory time.

Results

The observed tidal volume of BREATHE stacked breaths was 11.3 (9.7–13.3) mL/kg predicted body weight, significantly higher than the preset volume [6.3 (6.0–6.8) mL/kg; p < 0.001]. BREATHE identified more high-volume breaths (≥2 mL/kg above intended volume) than the other existing objective criteria for breath stacking [27 (7–59) vs 19 (5–46) breaths/h; p < 0.001]. Agreement between BREATHE and visual waveform inspection was high (raw agreement 96.4–98.1 %; phi 0.80–0.92). Breath stacking dyssynchrony was near-completely eliminated during neuromuscular blockade [0 (0–1) breaths/h; p < 0.001].

Conclusions

The BREATHE criteria provide an objective definition of breath stacking dyssynchrony emphasizing occult exposure to high tidal volumes. BREATHE identified high-volume breaths missed by other methods for quantifying this dyssynchrony. Neuromuscular blockade prevented breath stacking dyssynchrony, assuring provision of the intended lung-protective strategy.

Keywords

References

  1. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308. doi:10.1056/NEJM200005043421801
    • View reference on publisher's website
  2. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354. doi:10.1056/NEJM199802053380602
    • View reference on publisher's website
    • View reference on PubMed
  3. Chanques G, Kress JP, Pohlman A et al (2013) Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med 41:2177–2187. doi:10.1097/CCM.0b013e31828c2d7a
    • View reference on publisher's website
    • View reference on PubMed
  4. Kallet RH, Alonso JA, Diaz M et al (2002) The effects of tidal volume demand on work of breathing during simulated lung-protective ventilation. Respir Care 47:898–909
    • View reference on PubMed
  5. Thille AW, Rodriguez P, Cabello B et al (2006) Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32:1515–1522. doi:10.1007/s00134-006-0301-8
  6. Pohlman MC, McCallister KE, Schweickert WD et al (2008) Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 36:3019–3023. doi:10.1097/CCM.0b013e31818b308b
    • View reference on publisher's website
    • View reference on PubMed
  7. de Wit M, Pedram S, Best AM, Epstein SK (2009) Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care 24:74–80. doi:10.1016/j.jcrc.2008.08.011
    • View reference on publisher's website
    • View reference on PubMed
  8. Robinson BR, Blakeman TC, Toth P et al (2013) Patient-ventilator asynchrony in a traumatically injured population. Respir Care 58:1847–1855. doi:10.4187/respcare.02237
    • View reference on publisher's website
    • View reference on PubMed
  9. Akoumianaki E, Lyazidi A, Rey N et al (2013) Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 143:927–938. doi:10.1378/chest.12-1817
    • View reference on publisher's website
    • View reference on PubMed
  10. Slutsky AS (2010) Neuromuscular blocking agents in ARDS. N Engl J Med 363:1176–1180. doi:10.1056/NEJMe1007136
    • View reference on publisher's website
    • View reference on PubMed
  11. Papazian L, Forel JM, Gacouin A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116. doi:10.1056/NEJMoa1005372
    • View reference on publisher's website
    • View reference on PubMed
  12. Marini JJ (2011) Point: is pressure assist-control preferred over volume assist-control mode for lung protective ventilation in patients with ARDS? Yes. Chest 140:286–290. doi:10.1378/chest.11-1060
    • View reference on publisher's website
    • View reference on PubMed
  13. MacIntyre N (2011) Counterpoint: is pressure assist-control preferred over volume assist-control mode for lung protective ventilation in patients with ARDS? No. Chest 140:290–292. doi:10.1378/chest.11-1052
    • View reference on publisher's website
    • View reference on PubMed
  14. Rittayamai N, Katsios CM, Beloncle F et al (2015) Pressure-controlled vs. volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest 148:340–355. doi:10.1378/chest.14-3169
    • View reference on publisher's website
    • View reference on PubMed
  15. Beitler JR, Malhotra A, Sands SA et al (2015) Occult high tidal volumes from breath stacking dyssynchrony occur commonly during low tidal volume ventilation for ARDS. Am J Respir Crit Care Med 191:A3896
  16. de Wit M (2011) Monitoring of patient-ventilator interaction at the bedside. Respir Care 56:61–72. doi:10.4187/respcare.01077
    • View reference on publisher's website
    • View reference on PubMed
  17. Colombo D, Cammarota G, Alemani M et al (2011) Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med 39:2452–2457. doi:10.1097/CCM.0b013e318225753c
    • View reference on publisher's website
    • View reference on PubMed
  18. Blanch L, Villagrá A, Sales B et al (2015) Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 41:633–641. doi:10.1007/s00134-015-3692-6
  19. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533. doi:10.1001/jama.2012.5669
  20. Meade MO, Cook RJ, Guyatt GH et al (2000) Interobserver variation in interpreting chest radiographs for the diagnosis of acute respiratory distress syndrome. Am J Respir Crit Care Med 161:85–90. doi:10.1164/ajrccm.161.1.9809003
    • View reference on publisher's website
    • View reference on PubMed
  21. Meade MO, Guyatt GH, Cook RJ et al (2001) Agreement between alternative classifications of acute respiratory distress syndrome. Am J Respir Crit Care Med 163:490–493. doi:10.1164/ajrccm.163.2.2006067
    • View reference on publisher's website
    • View reference on PubMed
  22. Yoshida T, Torsani V, Gomes S et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188:1420–1427. doi:10.1164/rccm.201303-0539OC
    • View reference on publisher's website
    • View reference on PubMed
  23. Fanelli V, Morita Y, Cappello P et al (2016) Neuromuscular blocking agent cisatracurium attenuates lung injury by inhibition of nicotinic acetylcholine receptor-α1. Anesthesiology 124:132–140. doi:10.1097/ALN.0000000000000907
    • View reference on publisher's website
    • View reference on PubMed
  24. Steimback PW, Oliveira GP, Rzezinski AF et al (2009) Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury. Intensive Care Med 35:1120–1128. doi:10.1007/s00134-009-1439-y
  25. Pelosi P, Bottino N, Chiumello D et al (2003) Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med 167:521–527. doi:10.1164/rccm.200203-198OC
    • View reference on publisher's website
    • View reference on PubMed
  26. Mauri T, Eronia N, Abbruzzese C et al (2015) Effects of sigh on regional lung strain and ventilation heterogeneity in acute respiratory failure patients undergoing assisted mechanical ventilation. Crit Care Med 43:1823–1831. doi:10.1097/CCM.0000000000001083
    • View reference on publisher's website
    • View reference on PubMed
  27. Spieth PM, Carvalho AR, Pelosi P et al (2009) Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med 179:684–693. doi:10.1164/rccm.200806-975OC
    • View reference on publisher's website
    • View reference on PubMed
  28. Arold SP, Suki B, Alencar AM et al (2003) Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am J Physiol Lung Cell Mol Physiol 285:L370–L375. doi:10.1152/ajplung.00036.2003
    • View reference on publisher's website
    • View reference on PubMed
  29. de Vocht F, Burstyn I, Sanguanchaiyakrit N (2015) Rethinking cumulative exposure in epidemiology, again. J Expo Sci Environ Epidemiol 25:467–473. doi:10.1038/jes.2014.58
    • View reference on publisher's website
    • View reference on PubMed
  30. Beitler JR, Majumdar R, Hubmayr RD et al (2016) Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit Care Med 44:91–99. doi:10.1097/CCM.0000000000001355
    • View reference on publisher's website
    • View reference on PubMed
  31. Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784. doi:10.1007/s00134-005-2627-z
  32. Cressoni M, Cadringher P, Chiurazzi C et al (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189:149–158. doi:10.1164/rccm.201308-1567OC
    • View reference on PubMed
  33. Hotchkiss JR, Blanch L, Murias G et al (2000) Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med 161:463–468
    • View reference on publisher's website
    • View reference on PubMed
  34. Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122:2731–2740. doi:10.1172/JCI60331
    • View reference on publisher's website
    • View reference on PubMed
  35. Epstein SK (2011) How often does patient-ventilator asynchrony occur and what are the consequences? Respir Care 56:25–38. doi:10.4187/respcare.01009
    • View reference on publisher's website
    • View reference on PubMed
  36. Simon PM, Zurob AS, Wies WM et al (1999) Entrainment of respiration in humans by periodic lung inflations. Effect of state and CO2. Am J Respir Crit Care Med 160:950–960. doi:10.1164/ajrccm.160.3.9712057
    • View reference on publisher's website
    • View reference on PubMed
  37. Simon PM, Habel AM, Daubenspeck JA, Leiter JC (2000) Vagal feedback in the entrainment of respiration to mechanical ventilation in sleeping humans. J Appl Physiol 89:760–769
    • View reference on PubMed

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement