Log in | Register

Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation

A. Vieillard-Baron| M. Matthay| J. L. Teboul| T. Bein| M. Schultz| S. Magder| J. J. Marini
Review
Volume 42, Issue 5 / May , 2016

Pages 739 - 749

Abstract

Rationale

Acute respiratory distress syndrome (ARDS) is frequently associated with hemodynamic instability which appears as the main factor associated with mortality. Shock is driven by pulmonary hypertension, deleterious effects of mechanical ventilation (MV) on right ventricular (RV) function, and associated-sepsis. Hemodynamic effects of ventilation are due to changes in pleural pressure (Ppl) and changes in transpulmonary pressure (TP). TP affects RV afterload, whereas changes in Ppl affect venous return. Tidal forces and positive end-expiratory pressure (PEEP) increase pulmonary vascular resistance (PVR) in direct proportion to their effects on mean airway pressure (mPaw). The acutely injured lung has a reduced capacity to accommodate flowing blood and increases of blood flow accentuate fluid filtration. The dynamics of vascular pressure may contribute to ventilator-induced injury (VILI). In order to optimize perfusion, improve gas exchange, and minimize VILI risk, monitoring hemodynamics is important.

Results

During passive ventilation pulse pressure variations are a predictor of fluid responsiveness when conditions to ensure its validity are observed, but may also reflect afterload effects of MV. Central venous pressure can be helpful to monitor the response of RV function to treatment. Echocardiography is suitable to visualize the RV and to detect acute cor pulmonale (ACP), which occurs in 20–25 % of cases. Inserting a pulmonary artery catheter may be useful to measure/calculate pulmonary artery pressure, pulmonary and systemic vascular resistance, and cardiac output. These last two indexes may be misleading, however, in cases of West zones 2 or 1 and tricuspid regurgitation associated with RV dilatation. Transpulmonary thermodilution may be useful to evaluate extravascular lung water and the pulmonary vascular permeability index. To ensure adequate intravascular volume is the first goal of hemodynamic support in patients with shock. The benefit and risk balance of fluid expansion has to be carefully evaluated since it may improve systemic perfusion but also may decrease ventilator-free days, increase pulmonary edema, and promote RV failure. ACP can be prevented or treated by applying RV protective MV (low driving pressure, limited hypercapnia, PEEP adapted to lung recruitability) and by prone positioning. In cases of shock that do not respond to intravascular fluid administration, norepinephrine infusion and vasodilators inhalation may improve RV function. Extracorporeal membrane oxygenation (ECMO) has the potential to be the cause of, as well as a remedy for, hemodynamic problems. Continuous thermodilution-based and pulse contour analysis-based cardiac output monitoring are not recommended in patients treated with ECMO, since the results are frequently inaccurate. Extracorporeal CO2 removal, which could have the capability to reduce hypercapnia/acidosis-induced ACP, cannot currently be recommended because of the lack of sufficient data.

Keywords

References

  1. Mekontso-Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A (2015) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. doi:10.1007/s00134-015-4141-2
  2. McAuley DF, Laffey JG, O’Kane CM, Perkins GD, Mullan B, Trinder TJ, Johnston P, Hopkins PA, Johnston AJ, McDowell C, McNally C, HARP-2 Investigators, Irish Critical Care Trials Group (2014) Simvastatin in the acute respiratory distress syndrome. N Engl J Med 371:1695–1703
    • View reference on publisher's website
    • View reference on PubMed
  3. Vieillard-Baron A, Girou E, Valente E, Brun-Buisson C, Jardin F, Lemaire F, Brochard L (2000) Predictors of mortality in acute respiratory distress syndrome. Focus on the role of right heart catheterization. Am J Respir Crit Care Med 161:1597–1601
    • View reference on PubMed
  4. Magder S, Guerard B (2012) Heart-lung interactions and pulmonary buffering: lessons from a computational modeling study. Respir Physiol Neurobiol 182:60–70
    • View reference on publisher's website
    • View reference on PubMed
  5. Marini JJ, Culver BH, Butler J (1981) Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis 124:382–386
    • View reference on PubMed
  6. Magder SA, Lichtenstein S, Adelman AG (1983) Effects of negative pleural pressure on left ventricular hemodynamics. Am J Cardiol 52:588–593
    • View reference on publisher's website
    • View reference on PubMed
  7. Nanas S, Magder S (1992) Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 146:688–693
    • View reference on publisher's website
    • View reference on PubMed
  8. Permutt S, Bromberger-Barnea B, Bane HN (1962) Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thorac 19:239–260
    • View reference on PubMed
  9. Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434
  10. Tomashefski JF Jr, Davies P, Boggis C, Greene R, Zapol WM, Reid LM (1983) The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 112:112–126
    • View reference on PubMed
  11. Brigham KL, Woolverton WC, Blake LH, Staub NC (1974) Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J Clin Invest 54:792–804
    • View reference on publisher's website
    • View reference on PubMed
  12. Marini JJ, Ravenscraft SA (1992) Mean airway pressure: physiologic determinants and clinical importance—Part 1: physiologic determinants and measurements. Crit Care Med 20:1461–1472
    • View reference on publisher's website
    • View reference on PubMed
  13. Petersson J, Ax M, Frey J, Sánchez-Crespo A, Lindahl SG, Mure M (2010) Positive end-expiratory pressure redistributes regional blood flow and ventilation differently in supine and prone humans. Anesthesiology 113:1361–1369
    • View reference on publisher's website
    • View reference on PubMed
  14. Frennaux M, Williams L (2007) Ventricular-arterial and ventricular-ventricular interaction and their relevance to diastolic filling. Prog Cardiovasc Dis 49:252–262
    • View reference on publisher's website
  15. Loring SH, O’Donnell CR, Behazin N, Malhotra A, Sarge T, Ritz R, Novack V, Talmor D (2010) Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol 108:515–522
    • View reference on publisher's website
    • View reference on PubMed
  16. Fessler HE, Brower RG, Shapiro EP, Permutt S (1993) Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis 148:1657–1664
    • View reference on publisher's website
    • View reference on PubMed
  17. Quintel M, Pelosi P, Caironi P, Meinhardt JP, Luecke T, Herrmann P, Taccone P, Rylander C, Valenza F, Carlesso E, Gattinoni L (2004) An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injury. Am J Respir Crit Care Med 169:534–541
    • View reference on publisher's website
    • View reference on PubMed
  18. Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–1055
    • View reference on publisher's website
    • View reference on PubMed
  19. Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench to bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care 7:435–444
    • View reference on publisher's website
    • View reference on PubMed
  20. Albert RK (2012) The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am J Respir Crit Care Med 185:702–708
    • View reference on publisher's website
    • View reference on PubMed
  21. Broccard A, Vannay C, Feihl F, Schaller MD (2002) Impact of low pulmonary vascular pressure on ventilator-induced lung injury. Crit Care Med 30:2183–2190
    • View reference on publisher's website
    • View reference on PubMed
  22. López-Aguilar J, Piacentini E, Villagrá A, Murias G, Pascotto S, Saenz-Valiente A, Fernández-Segoviano P, Hotchkiss JR, Blanch L (2006) Contributions of vascular flow and pulmonary capillary pressure to ventilator-induced lung injury. Crit Care Med 34:1106–1112
    • View reference on publisher's website
    • View reference on PubMed
  23. Hotchkiss JR, Blanch LL, Murias G, Adams AB, Olson D, Wangensteen OD, Leo PH, Marini JJ (2000) Effects of decreased respiratory frequency on ventilator induced lung injury. Am J Respir Crit Care Med 161:463–468
    • View reference on publisher's website
    • View reference on PubMed
  24. Hotchkiss JR, Simonson DA, Marek DJ, Marini JJ, Dries DJ (2002) Pulmonary microvascular fracture in a patient with acute respiratory distress syndrome. Crit Care Med 30:2368–2370
    • View reference on publisher's website
    • View reference on PubMed
  25. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138
    • View reference on publisher's website
    • View reference on PubMed
  26. Yang X, Du B (2014) Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care 18:650
    • View reference on publisher's website
    • View reference on PubMed
  27. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939
    • View reference on publisher's website
    • View reference on PubMed
  28. Lhéritier G, Legras A, Caille A, Lherm T, Mathonnet A, Frat JP, Courte A, Martin-Lefèvre L, Gouëllo JP, Amiel JB, Garot D, Vignon P (2013) Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med 39:1734–1742
  29. Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F (2002) Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med 166:1310–1319
    • View reference on publisher's website
    • View reference on PubMed
  30. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815
  31. Teboul JL, Pinsky MR, Mercat A, Anguel N, Bernardin G, Achard JM, Boulain T, Richard C (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636
    • View reference on publisher's website
    • View reference on PubMed
  32. Bull TM, Clark B, McFann K, Moss M, National Institutes of Health/National Heart, Lung, and Blood Institute ARDS Network (2010) Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med 182:1123–1128
    • View reference on publisher's website
    • View reference on PubMed
  33. Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, Teboul JL, Monnet X (2013) Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med 41:472–480
    • View reference on publisher's website
    • View reference on PubMed
  34. Pinsky MR (2014) My paper 20 years later: effect of positive end-expiratory pressure on right ventricular function in humans. Intensive Care Med 40:935–941
  35. Ghignone M, Girling L, Prewitt RM (1984) Volume expansion versus norepinephrine in treatment of a low cardiac output complicating an acute increase in right ventricular afterload in dogs. Anesthesiology 60:132–135
    • View reference on publisher's website
    • View reference on PubMed
  36. Schneider AJ, Teule GJ, Groeneveld AB, Nauta J, Heidendal GA, Thijs LJ (1988) Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 116:103–112
    • View reference on publisher's website
    • View reference on PubMed
  37. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575
    • View reference on publisher's website
    • View reference on PubMed
  38. Grissom CK, Hirshberg EL, Dickerson JB, Brown SM, Lanspa MJ, Liu KD, Schoenfeld D, Tidswell M, Hite RD, Rock P, Miller RR 3rd, Morris AH (2015) Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome. Crit Care Med 43:288–295
    • View reference on publisher's website
    • View reference on PubMed
  39. Guyton AC, Lindsey AW, Gilluly JJ (1954) The limits of right ventricular compensation following acute increase in pulmonary circulation resistance. Circ Res 2:326–332
    • View reference on publisher's website
    • View reference on PubMed
  40. Vlahakes GJ, Turley K, Hoffman JI (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95
    • View reference on publisher's website
    • View reference on PubMed
  41. Morelli A, Teboul JL, Maggiore SM, Vieillard-Baron A, Rocco M, Conti G, De Gaetano A, Picchini U, Orecchioni A, Carbone I, Tritapepe L, Pietropaoli P, Westphal M (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293
    • View reference on publisher's website
    • View reference on PubMed
  42. Dzierba AL, Abel EE, Buckley MS, Lat I (2014) A review of inhaled nitric oxide and aerosolized epoprostenol in acute lung injury or the acute respiratory distress syndrome. Pharmacotherapy 34:279–290
    • View reference on publisher's website
    • View reference on PubMed
  43. Liu KD, Levitt J, Zhuo H, Kallet RH, Brady S, Steingrub J, Tidswell M, Siegel MD, Soto G, Peterson MW, Chesnutt MS, Phillips C, Weinacker A, Thompson BT, Eisner MD, Matthay MA (2008) Randomized clinical trial of activated protein C for the treatment of acute lung injury. Am J Respir Crit Care Med 178:618–623
    • View reference on publisher's website
    • View reference on PubMed
  44. Duggan M, McCaul CL, McNamara PJ, Engelberts D, Ackerley C, Kavanagh BP (2003) Atelectasis causes vascular leaks and lethal right ventricular failure in uninjured rat lungs. Am J Respir Crit Care Med 167:1633–1640
    • View reference on publisher's website
    • View reference on PubMed
  45. Mekontso Dessap A, Voiriot G, Zhou T, Marcos E, Dudek SM, Jacobson JR, Machado R, Adnot S, Brochard L, Maitre B, Garcia JG (2012) Conflicting physiological and genomic cardiopulmonary effects of recruitment maneuvers in murine acute lung injury. Am J Respir Cell Mol Biol 46:541–550
    • View reference on publisher's website
    • View reference on PubMed
  46. Naeje R, Brimioulle S (2001) Physiology in medicine: importance of hypoxic vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 5:67–71
    • View reference on publisher's website
  47. Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, Reid L (1979) Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Physiol 236:H818–H827
    • View reference on PubMed
  48. Mekontso Dessap A, Charron C, Devaquet J, Aboab J, Jardin F, Brochard L, Vieillard-Baron A (2009) Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 35:1850–1858
  49. Vieillard-Baron A, Price L, Matthay MA (2013) Acute cor pulmonale in ARDS. Intensive Care Med 39:1836–1838
  50. West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724
    • View reference on PubMed
  51. Jardin F, Brun-Ney D, Cazaux P, Dubourg O, Hardy A, Bourdarias JP (1989) Relation between transpulmonary pressure and right ventricular isovolumetric pressure change during respiratory support. Catheter Cardiovasc Diagn 16:215–220
    • View reference on publisher's website
  52. Vieillard-Baron A, Prin S, Augarde R, Desfonds P, Page B, Beauchet A, Jardin F (2002) Increasing respiratory rate to improve CO2 clearance during mechanical ventilation is not a panacea in acute respiratory failure. Crit Care Med 30:1407–1412
    • View reference on publisher's website
    • View reference on PubMed
  53. Orde SR, Behafar A, Stalboerger PG, Barros-Gomes S, Kane GC, Oh JK (2015) Effect of positive end-expiratory pressure on porcine right ventricle function assessed by speckle tracking echocardiography. BMC Anesthesiol 15:49
    • View reference on publisher's website
    • View reference on PubMed
  54. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, OSCILLATE Trial Investigators, Canadian Critical Care Trials Group et al (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368:795–805
    • View reference on publisher's website
    • View reference on PubMed
  55. Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M, Barreau-Baumstark K, Castanier M, Papazian L, Roch A (2012) Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 40:1539–1545
    • View reference on publisher's website
    • View reference on PubMed
  56. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164
    • View reference on publisher's website
    • View reference on PubMed
  57. Raj JU, Bland RD, Lai-Fook SJ (1986) Microvascular pressures measured by micropipettes in isolated edematous rabbit lungs. J Appl Physiol 60:539–545
    • View reference on PubMed
  58. Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y (2012) Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 40:1578–1585
    • View reference on publisher's website
    • View reference on PubMed
  59. Vieillard-Baron A, Prin S, Schmitt JM, Augarde R, Page B, Beauchet A, Jardin F (2002) Pressure-volume curves in acute respiratory distress syndrome: clinical demonstration of the influence of expiratory flow limitation on the initial slope. Am J Respir Crit Care Med 165:1107–1112
    • View reference on publisher's website
    • View reference on PubMed
  60. Tabuchi A, Nickless HT, Kim M, Semple JW, Koch E, Brochard L, Slutsky AS, Pries AR, Kuebler WM (2015) Acute lung injury causes asynchronous alveolar ventilation which can be corrected by individual sighs. Am J Respir Crit Care Med 193:396–406
  61. Vieillard-Baron A, Rabiller A, Chergui K, Peyrouset O, Page B, Beauchet A, Jardin F (2005) Prone position improves mechanics and alveolar ventilation in acute respiratory distress syndrome. Intensive Care Med 31:220–226
  62. Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303
    • View reference on publisher's website
    • View reference on PubMed
  63. Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F (2007) Prone position unloads the right ventricle in severe ARDS. Chest 132:1440–1446
    • View reference on publisher's website
    • View reference on PubMed
  64. Joszwiak M, Teboul JL, Anguel N, Persichini R, Silva S, Chemla D, Richard C, Monnet X (2013) Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 188:1428–1433
    • View reference on publisher's website
  65. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, PROSEVA Study Group et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–2168
    • View reference on publisher's website
    • View reference on PubMed
  66. Albert RK, Keniston A, Baboi L, Ayzac L, Guérin C, Proseva Investigators (2014) Prone position-induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome. Am J Respir Crit Care Med 189:494–496
    • View reference on publisher's website
    • View reference on PubMed
  67. Del Sorbo L, Cypel M, Fan E (2014) Extracorporeal life support for adults with severe acute respiratory failure. Lancet Respir Med 2:154–164
    • View reference on publisher's website
    • View reference on PubMed
  68. Reis Miranda D, van Thiel R, Brodie D, Bakker J (2015) Right ventricular unloading after initiation of venovenous extracorporeal membrane oxygenation. Am J Respir Crit Care Med 191:346–348
    • View reference on publisher's website
    • View reference on PubMed
  69. Pellegrino V, Hockings LE, Davies A (2014) Veno-arterial extracorporeal membrane oxygenation for adult cardiovascular failure. Curr Opin Crit Care 20:484–492
    • View reference on publisher's website
    • View reference on PubMed
  70. Combes A, Brodie D, Bartlett R, Brochard L, Brower R, Conrad S, De Backer D, Fan E, Ferguson N, Fortenberry J, Fraser J, Gattinoni L, Lynch W, MacLaren G, Mercat A, Mueller T, Ogino M, Peek G, Pellegrino V, Pesenti A, Ranieri M, Slutsky A, Vuylsteke A, International ECMO Network (ECMONet) (2014) Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med 190:488–496
    • View reference on publisher's website
    • View reference on PubMed
  71. Richard C, Argaud L, Blet A, Boulain T, Contentin L, Dechartres A, Dejode JM, Donetti L, Fartoukh M, Fletcher D, Kuteifan K, Lasocki S, Liet JM, Lukaszewicz AC, Mal H, Maury E, Osman D, Outin H, Richard JC, Schneider F, Tamion F (2014) Extracorporeal life support for patients with acute respiratory distress syndrome: report of a consensus conference. Ann Intensive Care 24(4):15
    • View reference on publisher's website
  72. Lazzeri C, Cianchi G, Bonizzoli M, Batacchi S, Peris A, Gensini GF (2015) The potential role and limitations of echocardiography in acute respiratory distress syndrome. Ther Adv Respir Dis 10:136–148
  73. Haller M, Zöllner C, Manert W, Briegel J, Kilger E, Polasek J, Hummel T, Forst H, Peter K (1995) Thermodilution cardiac output may be incorrect in patients on venovenous extracorporeal lung assist. Am J Respir Crit Care Med 152:1812–1817
    • View reference on publisher's website
    • View reference on PubMed
  74. Rauch H, Müller M, Fleischer F, Bauer H, Martin E, Böttiger BW (2002) Pulse contour analysis versus thermodilution in cardiac surgery patients. Acta Anaesthesiol Scand 46:424–429
    • View reference on publisher's website
    • View reference on PubMed
  75. Schmidt M, Bailey M, Kelly J, Hodgson C, Cooper DJ, Scheinkestel C, Pellegrino V, Bellomo R, Pilcher D (2014) Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation. Intensive Care Med 40:1256–1266
  76. Choi SW, Nam KW (2008) Venous pressure regulation during pulsatile extracorporeal life support. Artif Organs 32:822–827
    • View reference on publisher's website
    • View reference on PubMed
  77. Repessé X, Charron C, Vieillard-Baron A (2015) Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147:259–265
    • View reference on publisher's website
    • View reference on PubMed
  78. Morimont P, Guiot J, Desaive T, Tchana-Sato V, Janssen N, Cagnina A, Hella D, Blaffart F, Defraigne JO, Lambermont B (2015) Veno-venous extracorporeal CO2 removal improves pulmonary hemodynamics in a porcine ARDS model. Acta Anaesthesiol Scand 59:448–456
    • View reference on publisher's website
    • View reference on PubMed
  79. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A, Lung Safe Investigators, ESICM Trials Group (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care unit in 50 countries. JAMA 315:788–800
    • View reference on publisher's website
    • View reference on PubMed

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement