Log in | Register

Consensus statement from the 2014 International Microdialysis ForumOpen access

Peter J. Hutchinson| Ibrahim Jalloh| Adel Helmy| Keri L. H. Carpenter| Elham Rostami| Bo-Michael Bellander| Martyn G. Boutelle| Jeff W. Chen| Jan Claassen| Claire Dahyot-Fizelier| Per Enblad| Clare N. Gallagher| Raimund Helbok| Lars Hillered| Peter D. Le Roux| Sandra Magnoni| Halinder S. Mangat| David K. Menon| Carl-Henrik Nordström| Kristine H. O’Phelan| Mauro Oddo| Jon Perez Barcena| Claudia Rob
Conference Reports and Expert Panel
Volume 41, Issue 9 / September , 2015

Pages 1517 - 1528

Abstract

Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then, there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.

Keywords

References

  1. Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30:44–55
    • View reference on PubMed
  2. Persson L, Hillered L (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg 76:72–80. doi:10.3171/jns.1992.76.1.0072
    • View reference on PubMed
    • View reference on publisher's website
  3. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41. doi:10.1089/neu.2005.22.3
    • View reference on PubMed
    • View reference on publisher's website
  4. Bellander B-M, Cantais E, Enblad P et al (2004) Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 30:2166–2169. doi:10.1007/s00134-004-2461-8
  5. Hutchinson P, O’Phelan K, The Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring (2014) International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism. Neurocrit Care 21:1–11. doi:10.1007/s12028-014-0035-3
    • View reference on publisher's website
  6. Nikaina I, Paterakis K, Paraforos G et al (2012) Cerebral perfusion pressure, microdialysis biochemistry, and clinical outcome in patients with spontaneous intracerebral hematomas. J Crit Care 27:83–88. doi:10.1016/j.jcrc.2011.04.004
    • View reference on PubMed
    • View reference on publisher's website
  7. Berger C, Schäbitz W-R, Georgiadis D et al (2002) Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 33:519–524. doi:10.1161/hs0102.100878
    • View reference on PubMed
    • View reference on publisher's website
  8. Dohmen C, Bosche B, Graf R et al (2003) Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34:2152–2158. doi:10.1161/01.STR.0000083624.74929.32
    • View reference on PubMed
    • View reference on publisher's website
  9. Schneweis S, Grond M, Staub F et al (2001) Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke 32:1863–1867. doi:10.1161/01.str.32.8.1863
    • View reference on PubMed
    • View reference on publisher's website
  10. Tofteng F, Jorgensen L, Hansen BA et al (2002) Cerebral microdialysis in patients with fulminant hepatic failure. Hepatology 36:1333–1340. doi:10.1002/hep.1840360607
    • View reference on PubMed
    • View reference on publisher's website
  11. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610. doi:10.1016/0140-6736(93)90754-5
    • View reference on PubMed
    • View reference on publisher's website
  12. Ronne-Engström E, Hillered L, Flink R et al (1992) Intracerebral microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab 12:873–876. doi:10.1038/jcbfm.1992.119
    • View reference on PubMed
    • View reference on publisher's website
  13. Hutchinson PJ, O’Connell MT, Nortje J et al (2005) Cerebral microdialysis methodology—evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26:423–428. doi:10.1088/0967-3334/26/4/008
    • View reference on PubMed
    • View reference on publisher's website
  14. Hillman J, Åneman O, Anderson C et al (2005) A Microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery 56:1264–1270. doi:10.1227/01.NEU.0000159711.93592.8D
    • View reference on PubMed
    • View reference on publisher's website
  15. Helmy A, Carpenter KLH, Skepper JN et al (2009) Microdialysis of cytokines: methodological considerations, scanning electron microscopy, and determination of relative recovery. J Neurotrauma 26:549–561. doi:10.1089/neu.2008.0719
    • View reference on PubMed
    • View reference on publisher's website
  16. Helmy A, Carpenter KLH, Menon DK et al (2011) The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 31:658–670. doi:10.1038/jcbfm.2010.142
    • View reference on PubMed
    • View reference on publisher's website
  17. Chu J, Koudriavtsev V, Hjort K, Dahlin AP (2014) Fluorescence imaging of macromolecule transport in high molecular weight cut-off microdialysis. Anal Bioanal Chem 406:7601–7609. doi:10.1007/s00216-014-8192-y
    • View reference on PubMed
    • View reference on publisher's website
  18. Dahlin AP, Wetterhall M, Caldwell KD et al (2010) Methodological aspects on microdialysis protein sampling and quantification in biological fluids: an in vitro study on human ventricular CSF. Anal Chem 82:4376–4385. doi:10.1021/ac1007706
    • View reference on PubMed
    • View reference on publisher's website
  19. Dahlin AP, Purins K, Clausen F et al (2014) Refined microdialysis method for protein biomarker sampling in acute brain injury in the neurointensive care setting. Anal Chem 86:8671–8679. doi:10.1021/ac501880u
    • View reference on PubMed
    • View reference on publisher's website
  20. Hillered L, Dahlin AP, Clausen F et al (2014) Cerebral microdialysis for protein biomarker monitoring in the neurointensive care setting—a technical approach. Front Neurol 5:245. doi:10.3389/fneur.2014.00245
    • View reference on PubMed
    • View reference on publisher's website
  21. Sakowitz OW, Santos E, Nagel A et al (2013) Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke 44:220–223. doi:10.1161/STROKEAHA.112.672352
    • View reference on PubMed
    • View reference on publisher's website
  22. Feuerstein D, Manning A, Hashemi P et al (2010) Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab 30:1343–1355. doi:10.1038/jcbfm.2010.17
    • View reference on PubMed
    • View reference on publisher's website
  23. Rogers ML, Feuerstein D, Leong CL et al (2013) Continuous online microdialysis using microfluidic sensors: dynamic neurometabolic changes during spreading depolarization. ACS Chem Neurosci 4:799–807. doi:10.1021/cn400047x
    • View reference on PubMed
    • View reference on publisher's website
  24. Bhatia R, Hashemi P, Razzaq A et al (2006) Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery. Neurosurgery 58:ONS–313–20. doi:10.1227/01.NEU.0000208963.42378.83 (discussion ONS–321)
  25. Skoglund K, Hillered L, Purins K, Tsitsopoulos PP (2014) The neurological wake-up test does not alter cerebral energy metabolism and oxygenation in patients with severe traumatic brain injury. Neurocrit Care. doi:10.1007/s12028-013-9876-4
    • View reference on PubMed
  26. Adamides AA, Rosenfeldt FL, Winter CD et al (2009) Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg 209:531–539. doi:10.1016/j.jamcollsurg.2009.05.028
    • View reference on PubMed
    • View reference on publisher's website
  27. Belli A, Sen J, Petzold A et al (2008) Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 150:461–470. doi:10.1007/s00701-008-1580-3
    • View reference on publisher's website
  28. Skjøth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P (2004) Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 100:8–15. doi:10.3171/jns.2004.100.1.0008
    • View reference on PubMed
    • View reference on publisher's website
  29. Sarrafzadeh AS, Sakowitz OW, Kiening KL et al (2002) Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 30:1062–1070. doi:10.1097/00003246-200205000-00018
    • View reference on PubMed
    • View reference on publisher's website
  30. Kett-White R, Hutchinson PJ, Al-Rawi PG et al (2002) Cerebral oxygen and microdialysis monitoring during aneurysm surgery: effects of blood pressure, cerebrospinal fluid drainage, and temporary clipping on infarction. J Neurosurg 96:1013–1019. doi:10.3171/jns.2002.96.6.1013
    • View reference on PubMed
    • View reference on publisher's website
  31. Hlatky R, Valadka AB, Goodman JC et al (2004) Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906. doi:10.1089/0897715041526195
    • View reference on PubMed
    • View reference on publisher's website
  32. Tisdall MM, Smith M (2006) Cerebral microdialysis: research technique or clinical tool. Br J Anaesth 97:18–25. doi:10.1093/bja/ael109
    • View reference on PubMed
    • View reference on publisher's website
  33. Enblad P, Valtysson J, Andersson J et al (1996) Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab 16:637–644. doi:10.1097/00004647-199607000-00014
    • View reference on PubMed
    • View reference on publisher's website
  34. Hutchinson PJ, Gupta AK, Fryer TF et al (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745. doi:10.1097/00004647-200206000-00012
    • View reference on PubMed
    • View reference on publisher's website
  35. Hillered L, Valtysson J, Enblad P, Persson L (1998) Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry 64:486–491
    • View reference on PubMed
    • View reference on publisher's website
  36. Clausen T, Alves OL, Reinert M et al (2005) Association between elevated brain tissue glycerol levels and poor outcome following severe traumatic brain injury. J Neurosurg 103:233–238. doi:10.3171/jns.2005.103.2.0233
    • View reference on PubMed
    • View reference on publisher's website
  37. Schulz MK, Wang LP, Tange M, Bjerre P (2000) Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 93:808–814. doi:10.3171/jns.2000.93.5.0808
    • View reference on PubMed
    • View reference on publisher's website
  38. Agren-Wilsson A, Roslin M, Eklund A et al (2003) Intracerebral microdialysis and CSF hydrodynamics in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 74:217–221
    • View reference on PubMed
    • View reference on publisher's website
  39. Eide PK, Stanisic M (2010) Cerebral microdialysis and intracranial pressure monitoring in patients with idiopathic normal-pressure hydrocephalus: association with clinical response to extended lumbar drainage and shunt surgery. J Neurosurg 112:414–424. doi:10.3171/2009.5.09122
    • View reference on PubMed
    • View reference on publisher's website
  40. Zauner A, Doppenberg EM, Woodward JJ et al (1997) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41:1082–1091. doi:10.1097/00006123-199711000-00011(discussion 1091–1093)
    • View reference on PubMed
    • View reference on publisher's website
  41. Stuart RM, Schmidt M, Kurtz P et al (2010) Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocrit Care 12:188–198. doi:10.1007/s12028-010-9330-9
    • View reference on PubMed
    • View reference on publisher's website
  42. Ibrahim MI, Abdullah M, Naing L et al (2007) Cost effectiveness analysis of using multiple neuromodalities in treating severe traumatic brain injury in a developing country like Malaysia. Asian J Surg 30:261–266. doi:10.1016/S1015-9584(08)60036-6
    • View reference on PubMed
    • View reference on publisher's website
  43. Patel HC, Menon DK, Tebbs S et al (2002) Specialist neurocritical care and outcome from head injury. Intensive Care Med 28:547–553. doi:10.1007/s00134-002-1235-4
  44. Stein SC, Georgoff P, Meghan S et al (2010) Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg 112:1105–1112. doi:10.3171/2009.8.JNS09738
    • View reference on PubMed
    • View reference on publisher's website
  45. Whitmore RG, Thawani JP, Grady MS et al (2012) Is aggressive treatment of traumatic brain injury cost-effective? J Neurosurg 116:1106–1113. doi:10.3171/2012.1.JNS11962
    • View reference on PubMed
    • View reference on publisher's website
  46. Elf K, Nilsson P, Enblad P (2002) Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit Care Med 30:2129
    • View reference on PubMed
    • View reference on publisher's website
  47. Ståhl N, Mellergård P, Hallström A et al (2001) Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 45:977–985
    • View reference on PubMed
    • View reference on publisher's website
  48. Nordström C, Reinstrup P, Xu W et al (2003) Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology 98:809–814. doi:10.1097/00000542-200304000-00004
    • View reference on PubMed
    • View reference on publisher's website
  49. Engström M, Polito A, Reinstrup P et al (2005) Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg 102:460–469. doi:10.3171/jns.2005.102.3.0460
    • View reference on PubMed
    • View reference on publisher's website
  50. Timofeev I, Czosnyka M, Carpenter KLH et al (2011) Interaction between brain chemistry and physiology after traumatic brain injury: impact of autoregulation and microdialysis catheter location. J Neurotrauma 28:849–860. doi:10.1089/neu.2010.1656
    • View reference on PubMed
    • View reference on publisher's website
  51. Timofeev I, Carpenter KLH, Nortje J et al (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134:484–494. doi:10.1093/brain/awq353
    • View reference on PubMed
    • View reference on publisher's website
  52. Vespa PM, O Phelan K, McArthur D et al (2007) Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med 35:1153–1160. doi:10.1097/01.CCM.0000259466.66310.4F
    • View reference on PubMed
    • View reference on publisher's website
  53. Stein NR, McArthur DL, Etchepare M, Vespa PM (2012) Early cerebral metabolic crisis after tbi influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care 17:49–57. doi:10.1007/s12028-012-9708-y
    • View reference on PubMed
    • View reference on publisher's website
  54. Schmidt JM, Ko S-B, Helbok R et al (2011) Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke 42:1351–1356. doi:10.1161/STROKEAHA.110.596874
    • View reference on PubMed
    • View reference on publisher's website
  55. Vespa PM, McArthur D, O’Phelan K et al (2003) Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 23:865–877. doi:10.1097/01.WCB.0000076701.45782.EF
    • View reference on PubMed
    • View reference on publisher's website
  56. Oddo M, Schmidt JM, Carrera E et al (2008) Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 36:3233–3238. doi:10.1097/CCM.0b013e31818f4026
    • View reference on PubMed
    • View reference on publisher's website
  57. Dizdarevic K, Hamdan A, Omerhodzic I, Kominlija-Smajic E (2012) Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg 114:142–148. doi:10.1016/j.clineuro.2011.10.005
    • View reference on PubMed
    • View reference on publisher's website
  58. Cesarini KG, Enblad P, Ronne-Engström E et al (2002) early cerebral hyperglycolysis after subarachnoid haemorrhage correlates with favourable outcome. Acta Neurochir (Wien) 144:1121–1131. doi:10.1007/s00701-002-1011-9
    • View reference on publisher's website
  59. Schlenk F, Graetz D, Nagel A et al (2008) Insulin-related decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care 12:R9. doi:10.1186/cc6776
    • View reference on PubMed
    • View reference on publisher's website
  60. Schmidt JM, Claassen J, Ko S-B et al (2012) Nutritional support and brain tissue glucose metabolism in poor-grade SAH: a retrospective observational study. Crit Care 16:R15. doi:10.1186/cc11160
    • View reference on PubMed
    • View reference on publisher's website
  61. Vespa P, McArthur DL, Stein N et al (2012) Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med 40:1923–1929. doi:10.1097/CCM.0b013e31824e0fcc
    • View reference on PubMed
    • View reference on publisher's website
  62. Vespa P, Boonyaputthikul R, McArthur DL et al (2006) Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med 34:850–856. doi:10.1097/01.CCM.0000201875.12245.6F
    • View reference on PubMed
    • View reference on publisher's website
  63. Zetterling M, Hillered L, Enblad P et al (2011) Relation between brain interstitial and systemic glucose concentrations after subarachnoid hemorrhage. J Neurosurg 115:66–74. doi:10.3171/2011.3.JNS10899
    • View reference on PubMed
    • View reference on publisher's website
  64. Magnoni S, Tedesco C, Carbonara M et al (2012) Relationship between systemic glucose and cerebral glucose is preserved in patients with severe traumatic brain injury, but glucose delivery to the brain may become limited when oxidative metabolism is impaired: implications for glycemic control. Crit Care Med 40:1785–1791. doi:10.1097/CCM.0b013e318246bd45
    • View reference on PubMed
    • View reference on publisher's website
  65. Rostami E, Bellander BM (2011) Monitoring of glucose in brain, adipose tissue, and peripheral blood in patients with traumatic brain injury: a microdialysis study. J Diabetes Sci Technol 5:596–604. doi:10.1177/193229681100500314
    • View reference on PubMed
    • View reference on publisher's website
  66. Parkin M, Hopwood S, Jones DA et al (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25:402–413. doi:10.1038/sj.jcbfm.9600051
    • View reference on PubMed
    • View reference on publisher's website
  67. Sarrafzadeh A, Haux D, Küchler I et al (2004) Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg 100:400–406. doi:10.3171/jns.2004.100.3.0400
    • View reference on PubMed
    • View reference on publisher's website
  68. Paraforou T, Paterakis K, Fountas K et al (2011) Cerebral perfusion pressure, microdialysis biochemistry and clinical outcome in patients with traumatic brain injury. BMC Res Notes 4:540. doi:10.1186/1756-0500-4-540
    • View reference on PubMed
    • View reference on publisher's website
  69. Samuelsson C, Hillered L, Enblad P, Ronne-Engström E (2009) Microdialysis patterns in subarachnoid hemorrhage patients with focus on ischemic events and brain interstitial glutamine levels. Acta Neurochir (Wien) 151:437–446. doi:10.1007/s00701-009-0265-x
    • View reference on publisher's website
  70. Marcoux J, McArthur DA, Miller C et al (2008) Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med 36:2871–2877. doi:10.1097/CCM.0b013e318186a4a0
    • View reference on PubMed
    • View reference on publisher's website
  71. Vespa PM, Miller C, McArthur D et al (2007) Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 35:2830–2836. doi:10.1097/01.CCM.0000295667.66853.BC
    • View reference on PubMed
    • View reference on publisher's website
  72. Kett-White R, Hutchinson PJ, Al-Rawi PG et al (2002) Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery 50:1213–1221 (discussion 1221–1222)
    • View reference on PubMed
  73. Reinstrup P, Ståhl N, Mellergård P et al (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–710. doi:10.1227/00006123-200009000-00035
    • View reference on PubMed
  74. Nielsen TH, Olsen NV, Toft P, Nordström C (2013) Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets. Acta Anaesthesiol Scand 57:793–801. doi:10.1111/aas.12092
    • View reference on PubMed
    • View reference on publisher's website
  75. Purins K, Enblad P, Wiklund L, Lewén A (2012) Brain tissue oxygenation and cerebral perfusion pressure thresholds of ischemia in a standardized pig brain death model. Neurocrit Care 16:462–469. doi:10.1007/s12028-012-9675-3
    • View reference on PubMed
    • View reference on publisher's website
  76. Vespa P, Prins M, Ronne-Engström E et al (1998) Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg 89:971–982. doi:10.3171/jns.1998.89.6.0971
    • View reference on PubMed
    • View reference on publisher's website
  77. Kinoshita K, Moriya T, Utagawa A et al (2010) Change in brain glucose after enteral nutrition in subarachnoid hemorrhage. J Surg Res 162:221–224. doi:10.1016/j.jss.2009.06.009
    • View reference on PubMed
    • View reference on publisher's website
  78. Chamoun R, Suki D, Gopinath SP et al (2010) Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 113:564–570. doi:10.3171/2009.12.JNS09689
    • View reference on PubMed
    • View reference on publisher's website
  79. Oddo M, Levine JM, Frangos S et al (2012) Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke 43:1418–1421. doi:10.1161/STROKEAHA.111.648568
    • View reference on PubMed
    • View reference on publisher's website
  80. Unterberg AW, Sakowitz OW, Sarrafzadeh AS et al (2001) Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 94:740–749. doi:10.3171/jns.2001.94.5.0740
    • View reference on PubMed
    • View reference on publisher's website
  81. Nagel A, Graetz D, Schink T et al (2009) Relevance of intracranial hypertension for cerebral metabolism in aneurysmal subarachnoid hemorrhage. J Neurosurg 111:94–101. doi:10.3171/2009.1.JNS08587
    • View reference on PubMed
    • View reference on publisher's website
  82. Nilsson OG, Brandt L, Ungerstedt U, Säveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 45:1176–1184 (discussion 1184–1185)
    • View reference on PubMed
    • View reference on publisher's website
  83. Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS (2008) Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med 34:1200–1207. doi:10.1007/s00134-008-1044-5
  84. Helbok R, Schmidt JM, Kurtz P et al (2010) Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care 12:317–323. doi:10.1007/s12028-009-9327-4
    • View reference on PubMed
    • View reference on publisher's website
  85. Johnston AJ, Steiner LA, Coles JP et al (2005) Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med 33:189–195. doi:10.1097/01.CCM.0000149837.09225.BD
    • View reference on PubMed
    • View reference on publisher's website
  86. Johnston AJ, Steiner LA, Chatfield DA et al (2004) Effect of cerebral perfusion pressure augmentation with dopamine and norepinephrine on global and focal brain oxygenation after traumatic brain injury. Intensive Care Med 30:791–797. doi:10.1007/s00134-003-2155-7
  87. Chen HI, Stiefel MF, Oddo M et al (2011) Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery 69:53–63. doi:10.1227/NEU.0b013e3182191451(discussion 63)
    • View reference on PubMed
    • View reference on publisher's website
  88. Helbok R, Kurtz P, Schmidt MJ et al (2012) Effects of the neurological wake-up test on clinical examination, intracranial pressure, brain metabolism and brain tissue oxygenation in severely brain-injured patients. Crit Care 16:R226. doi:10.1186/cc11880
    • View reference on PubMed
    • View reference on publisher's website
  89. Oddo M, Milby A, Chen I et al (2009) Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke 40:1275–1281. doi:10.1161/STROKEAHA.108.527911
    • View reference on PubMed
    • View reference on publisher's website
  90. Soukup J, Zauner A, Doppenberg EMR et al (2002) Relationship between brain temperature, brain chemistry and oxygen delivery after severe human head injury: the effect of mild hypothermia. Neurol Res 24:161–168. doi:10.1179/016164102101199710
    • View reference on PubMed
    • View reference on publisher's website
  91. Oddo M, Frangos S, Milby A et al (2009) Induced normothermia attenuates cerebral metabolic distress in patients with aneurysmal subarachnoid hemorrhage and refractory fever. Stroke 40:1913–1916. doi:10.1161/STROKEAHA.108.534115
    • View reference on PubMed
    • View reference on publisher's website
  92. Ho CL, Wang CM, Lee KK et al (2008) Cerebral oxygenation, vascular reactivity, and neurochemistry following decompressive craniectomy for severe traumatic brain injury. J Neurosurg 108:943–949. doi:10.3171/JNS/2008/108/5/0943
    • View reference on PubMed
    • View reference on publisher's website
  93. Nagel A, Graetz D, Vajkoczy P, Sarrafzadeh AS (2009) Decompressive craniectomy in aneurysmal subarachnoid hemorrhage: relation to cerebral perfusion pressure and metabolism. Neurocrit Care 11:384–394. doi:10.1007/s12028-009-9269-x
    • View reference on PubMed
    • View reference on publisher's website
  94. Gallagher CN, Carpenter KLH, Grice P et al (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132:2839–2849. doi:10.1093/brain/awp202
    • View reference on PubMed
    • View reference on publisher's website
  95. Hillman J, Milos P, Yu ZQ et al (2006) Intracerebral microdialysis in neurosurgical intensive care patients utilising catheters with different molecular cut-off (20 and 100 kD). Acta Neurochir (Wien) 148:319–324. doi:10.1007/s00701-005-0670-8
    • View reference on publisher's website
  96. Carpenter KLH, Jalloh I, Gallagher CN et al (2014) (13)C-labelled microdialysis studies of cerebral metabolism in TBI patients. Eur J Pharm Sci 57:87–97. doi:10.1016/j.ejps.2013.12.012
    • View reference on PubMed
    • View reference on publisher's website
  97. Jalloh I, Carpenter KLH, Grice P et al (2015) Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose. J Cereb Blood Flow Metab 35:111–120. doi:10.1038/jcbfm.2014.177
    • View reference on PubMed
    • View reference on publisher's website
  98. Notkina N, Dahyot-Fizelier C, Gupta AK (2012) In vivo microdialysis in pharmacological studies of antibacterial agents in the brain. Br J Anaesth 109:155–160. doi:10.1093/bja/aes216
    • View reference on PubMed
    • View reference on publisher's website
  99. Dahyot-Fizelier C, Timofeev I, Marchand S et al (2010) Brain microdialysis study of meropenem in two patients with acute brain injury. Antimicrob Agents Chemother 54:3502–3504. doi:10.1128/AAC.01725-09
    • View reference on PubMed
    • View reference on publisher's website
  100. Charalambides C, Sgouros S, Sakas D (2010) Intracerebral microdialysis in children. Childs Nerv Syst 26:215–220. doi:10.1007/s00381-009-1031-3
    • View reference on PubMed
    • View reference on publisher's website
  101. Richards DA, Tolias CM, Sgouros S, Bowery NG (2003) Extracellular glutamine to glutamate ratio may predict outcome in the injured brain: a clinical microdialysis study in children. Pharmacol Res 48:101–109. doi:10.1016/s1043-6618(03)00081-1
    • View reference on PubMed
  102. Tolias CM, Richards DA, Bowery NG, Sgouros S (2002) Extracellular glutamate in the brains of children with severe head injuries: a pilot microdialysis study. Childs Nerv Syst 18:368–374. doi:10.1007/s00381-002-0623-y
    • View reference on PubMed
  103. McNay EC, Sherwin RS (2004) From artificial cerebro-spinal fluid (aCSF) to artificial extracellular fluid (aECF): microdialysis perfusate composition effects on in vivo brain ECF glucose measurements. J Neurosci Methods 132:35–43. doi:10.1016/j.jneumeth.2003.08.014
    • View reference on PubMed
    • View reference on publisher's website
  104. Marklund N, Blennow K, Zetterberg H et al (2009) Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg 110:1227–1237. doi:10.3171/2008.9.JNS08584
    • View reference on PubMed
    • View reference on publisher's website
  105. Clausen F, Marklund N, Lewén A et al (2012) Interstitial F(2)-isoprostane 8-iso-PGF(2α) as a biomarker of oxidative stress after severe human traumatic brain injury. J Neurotrauma 29:766–775. doi:10.1089/neu.2011.1754
    • View reference on PubMed
    • View reference on publisher's website
  106. Sen J, Smith M, Belli A et al (2005) Extracellular fluid S100B in the injured brain: a future surrogate marker of acute brain injury? Acta Neurochir (Wien) 147:897–900. doi:10.1007/s00701-005-0526-2
    • View reference on publisher's website
  107. Magnoni S, Esparza TJ, Conte V et al (2012) Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain 135:1268–1280. doi:10.1093/brain/awr286
    • View reference on PubMed
    • View reference on publisher's website
  108. Helbok R, Schiefecker A, Delazer M et al (2014) Cerebral tau is elevated after aneurysmal subarachnoid haemorrhage and associated with brain metabolic distress and poor functional and cognitive long-term outcome. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2013-307326
    • View reference on PubMed
  109. Antunes AP, Schiefecker AJ, Beer R et al (2014) Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage. Crit Care 18:R119. doi:10.1186/cc13916
    • View reference on PubMed
    • View reference on publisher's website
  110. Brody DL, Magnoni S, Schwetye KE et al (2008) Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321:1221–1224. doi:10.1126/science.1161591
    • View reference on PubMed
    • View reference on publisher's website
  111. Petzold A, Tisdall MM, Girbes AR et al (2011) In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain 134:464–483. doi:10.1093/brain/awq360
    • View reference on PubMed
    • View reference on publisher's website
  112. Parkin MC, Hopwood SE, Boutelle MG, Strong AJ (2003) Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. Trends Anal Chem 22:487–497. doi:10.1016/S0165-9936(03)00912-9
    • View reference on publisher's website

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement