Log in | Register

Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis

Erica Aranha Suzumura| Mabel Figueiró| Karina Normilio-Silva| Lígia Laranjeira| Claudia Oliveira| Anna Maria Buehler| Diogo Bugano| Marcelo Britto Passos Amato| Carlos Roberto Ribeiro Carvalho| Otavio Berwanger| Alexandre Biasi Cavalcanti
Systematic Review
Volume 40, Issue 9 / September , 2014

Pages 1227 - 1240

Abstract

Purpose

To assess the effects of alveolar recruitment maneuvers (ARMs) on clinical outcomes in patients with acute respiratory distress syndrome (ARDS).

Methods

We conducted a search of the MEDLINE, EMBASE, LILACS, CINAHL, CENTRAL, Scopus, and Web of Science (from inception to July 2014) databases for all (i.e. no language restriction) randomized controlled trials (RCTs) evaluating the effects of ARMs versus no ARMs in adults with ARDS. Four teams of two reviewers independently assessed the eligibility of the studies identified during the search and appraised the risk of bias and extracted data from those which were assessed as meeting the inclusion criteria. Data were pooled using the random-effects model. Trial sequential analysis (TSA) was used to establish monitoring boundaries to limit global type I error due to repetitive testing for our primary outcome (in-hospital mortality). The GRADE system was used to rate the quality of evidence.

Results

Our database search identified ten RCTs (1,594 patients, 612 events) which satisfied the inclusion criteria. The meta-analysis assessing the effect of ARMs on in-hospital mortality showed a risk ratio (RR) of 0.84 [95 % confidence interval (CI) 0.74–0.95; I2 = 0 %], although the quality of evidence was considered to be low due to the risk of bias in the included trials and the indirectness of the evidence—that is, ARMs were usually conducted together with other ventilatory interventions which may affect the outcome of interest. There were no differences in the rates of barotrauma (RR 1.11; 95 % CI 0.78–1.57; I2 = 0 %) or need for rescue therapies (RR 0.76, 95 % CI 0.41–1.40; I2 = 56 %). Most trials found no difference between groups in terms of duration of mechanical ventilation and length of stay in the intensive care unit and hospital. The TSA showed that the available evidence for the effect of ARMs on in-hospital mortality is precise in the case of a type I error of 5 %, but it is not precise with a type I error of 1 %.

Conclusions

Although ARMs may decrease the mortality of patients with ARDS without increasing the risk for major adverse events, current evidence is not definitive. Large-scale ongoing trials addressing this question may provide data better applicable to clinical practice.

Keywords

References

  1. Sigurdsson MI, Sigvaldason K, Gunnarsson TS, Moller A, Sigurdsson GH (2013) Acute respiratory distress syndrome: nationwide changes in incidence, treatment and mortality over 23 years. Acta Anaesthesiol Scand 57(1):37–45. doi:10.1111/aas.12001
    • View reference on PubMed
    • View reference on publisher's website
  2. Azevedo LC, Park M, Salluh JI, Rea-Neto A, Souza-Dantas VC, Varaschin P et al (2013) Clinical outcomes of patients requiring ventilatory support in Brazilian intensive care units: a multicenter, prospective, cohort study. Crit Care 17(2):R63. doi:10.1186/cc12594
    • View reference on PubMed
    • View reference on publisher's website
  3. Phua J, Badia JR, Adhikari NK, Friedrich JO, Fowler RA, Singh JM, Scales DC, Stather DR, Li A, Jones A, Gattas DJ, Hallett D, Tomlinson G, Stewart TE, Ferguson ND (2009) Has mortality from acute respiratory distress syndrome decreased over time?: a systematic review. Am J Respir Crit Care Med 179(3):220–227. doi:10.1164/rccm.200805-722OC
    • View reference on PubMed
    • View reference on publisher's website
  4. Gattinoni L, Protti A, Caironi P, Carlesso E (2010) Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 38[10 Suppl]:S539–S548. doi:10.1097/CCM.0b013e3181f1fcf7
    • View reference on PubMed
    • View reference on publisher's website
  5. Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160(1):109–116. doi:10.1164/ajrccm.160.1.9803046
    • View reference on PubMed
    • View reference on publisher's website
  6. American Thoracic Society (1999) International consensus conferences in intensive care medicine: ventilator-associated lung injury in ARDS. This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societé de Réanimation de Langue Française, and was approved by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med 160(6):2118–2124
  7. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149(5):1327–1334. doi:10.1164/ajrccm.149.5.8173774
    • View reference on PubMed
    • View reference on publisher's website
  8. Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34(5):1311–1318. doi:10.1097/01.CCM.0000215598.84885.01
    • View reference on PubMed
    • View reference on publisher's website
  9. Brower RG, Morris A, MacIntyre N, Matthay MA, Hayden D, Thompson T, Clemmer T, Lanken PN, Schoenfeld D, ARDS Clinical Trials Network, National Heart, Lung, and Blood Institute, National Institutes of Health (2003) Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med 31(11):2592–2597. doi:10.1097/01.CCM.0000090001.91640.45
    • View reference on PubMed
    • View reference on publisher's website
  10. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–354. doi:10.1056/NEJM199802053380602
    • View reference on PubMed
    • View reference on publisher's website
  11. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, LE Hand, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE, Lung Open Ventilation Study Investigators (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645. doi:10.1001/jama.299.6.637
    • View reference on PubMed
    • View reference on publisher's website
  12. Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, Meade MO, Ferguson ND (2008) Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 178(11):1156–1163. doi:10.1164/rccm.200802-335OC
    • View reference on PubMed
    • View reference on publisher's website
  13. Hodgson C, Keating JL, Holland AE, Davies AR, Smirneos L, Bradley SJ, Tuxen D (2009) Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation. Cochrane Database Syst Rev Apr 15(2):CD006667. doi: 10.1002/14651858.CD006667
  14. Suzumura EA, Buehler AM, Figueiro M, Laranjeira LN, Normilio-Silva K, Bugano DG, Berwanger O, Cavalcanti AB (2013) Effect of alveolar recruitment maneuvers on mortality of patients with acute respiratory distress syndrome: systematic review and meta-analysis. Intensive Care Med 39[Suppl 2]:374. doi:10.1007/s00134-013-3095-5
  15. Higgens JPT, Green S (eds) (2009) Cochrane handbook for systematic reviews of interventions. Wiley-Blackwell, London
  16. Moher D, Liberati A, Tetzlaff J, Altman DG; for PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012. doi:10.1016/j.jclinepi.2009.06.005
    • View reference on PubMed
    • View reference on publisher's website
  17. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308. doi:10.1056/NEJM200005043421801
    • View reference on publisher's website
  18. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher vs. lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336. doi:10.1056/NEJMoa032193
    • View reference on PubMed
    • View reference on publisher's website
  19. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. doi:10.1136/bmj.327.7414.557
    • View reference on PubMed
    • View reference on publisher's website
  20. Sterne JA, Egger M, Smith GD (2001) Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis. BMJ 323(7304):101–105. doi:10.1136/bmj.323.7304.101
    • View reference on PubMed
    • View reference on publisher's website
  21. Egger M, Smith GD (1998) Bias in location and selection of studies. BMJ 316:61–66. doi:10.1136/bmj.316.7124.61
    • View reference on PubMed
    • View reference on publisher's website
  22. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303(9):865–873. doi:10.1001/jama.2010.218
    • View reference on PubMed
    • View reference on publisher's website
  23. Pogue J, Yusuf S (1997) Cumulating evidence from randomized trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials 18(6):580–593. doi:10.1016/S0197-2456(97)00051-2
    • View reference on PubMed
    • View reference on publisher's website
  24. Devereaux PJ, Beattie WS, Choi PT, Badner NH, Guyatt GH, Villar JC, Cinà CS, Leslie K, Jacka MJ, Montori VM, Bhandari M, Avezum A, Cavalcanti AB, Giles JW, Schricker T, Yang H, Jakobsen CJ, Yusuf S (2005) How strong is the evidence for the use of perioperative beta blockers in non-cardiac surgery? Systematic review and meta-analysis of randomised controlled trials. BMJ 331(7512):313–321. doi:10.1136/bmj.38503.623646.8F
    • View reference on PubMed
    • View reference on publisher's website
  25. Guyatt GH, Oxman AD, Schünemann HJ (2011) GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 64(4):380–382. doi:10.1016/j.jclinepi.2010.09.011
    • View reference on PubMed
    • View reference on publisher's website
  26. Kacmarek RM (2007) ARDSnet protocol vs. open lung approach in ARDS. ClinicalTrials.gov registration number: NCT00431158. Available at: http://www.clinicaltrials.gov/ct2/show/NCT00431158?term=NCT00431158&rank=1. Accessed 01 Jul 2014
  27. Lim CM, Jung H, Koh Y, Lee JS, Shim TS, Lee SD, Kim WS, Kim DS, Kim WD (2003) Effect of alveolar recruitment maneuver in early acute respiratory distress syndrome according to antiderecruitment strategy, etiological category of diffuse lung injury, and body position of the patient. Crit Care Med 31(2):411–418. doi:10.1097/01.CCM.0000048631.88155.39
    • View reference on PubMed
    • View reference on publisher's website
  28. Park KJ, Lee YJ, Oh YJ, Lee KS, Sheen SS, Hwang SC (2003) Combined effects of inhaled nitric oxide and a recruitment maneuver in patients with acute respiratory distress syndrome. Yonsei Med J 44(2):219–226
    • View reference on PubMed
  29. Long Y, Liu DW, Zhou X, Liu HZ, Guo ZJ, Huang H, Wang XT, Rui X, Cui N (2006) The application of individualized ventilation strategies in acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi 29(8):549–553
    • View reference on PubMed
  30. Wang XZ, Lu CJ, Gao FQ, Li XH, Hao F, Ning FY (2007) Comparison of the effects of BiPAP ventilation combined with lung recruitment maneuvers and low tidal volume A/C ventilation in patients with acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi 30(1):44–47
    • View reference on PubMed
  31. Huh JW, Jung H, Choi HS, Hong SB, Lim CM, Koh Y (2009) Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome. Crit Care 13(1):R22. doi:10.1186/cc7725
    • View reference on PubMed
    • View reference on publisher's website
  32. Xi XM, Jiang L, Zhu B, RM group (2010) Clinical efficacy and safety of recruitment maneuver in patients with acute respiratory distress syndrome using low tidal volume ventilation: a multicenter randomized controlled clinical trial. Chin Med J 123(21):3100–3105
    • View reference on PubMed
  33. Hodgson CL, Tuxen DV, Davies AR, Bailey MJ, Higgins AM, Holland AE, Keating JL, Pilcher DV, Westbrook AJ, Cooper DJ, Nichol AD (2011) A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and targeted low airway pressures in patients with acute respiratory distress syndrome. Crit Care 15(3):R133. doi:10.1186/cc10249
    • View reference on PubMed
    • View reference on publisher's website
  34. Liu WL, Wang CM, Chen WL (2011) Effects of recruitment maneuvers in patients with early acute lung injury and acute respiratory distress syndrome. Respirology 16[Suppl 2]:S258. doi:10.1111/j.1400-1843.2011.02071.x
  35. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149(3 Pt 1):818–824. doi:10.1164/ajrccm.149.3.7509706
    • View reference on PubMed
    • View reference on publisher's website
  36. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky AS, Vincent JL, Rubenfeld GD, Thompson BT, Ranieri VM (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38(10):1573–1582. doi:10.1007/s00134-012-2682-1
  37. Barbas CS, de Matos GF, Pincelli MP, da Rosa Borges E, Antunes T, de Barros JM, Okamoto V, Borges JB, Amato MB, de Carvalho CR (2005) Mechanical ventilation in acute respiratory failure: recruitment and high positive end-expiratory pressure are necessary. Curr Opin Crit Care 11(1):18–28
    • View reference on PubMed
    • View reference on publisher's website
  38. Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174(3):268–278. doi:10.1164/rccm.200506-976OC
    • View reference on PubMed
    • View reference on publisher's website
  39. de Matos GF, Stanzani F, Passos RH, Fontana MF, Albaladejo R, Caserta RE, Santos DC, Borges JB, Amato MB, Barbas CS (2012) How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography. Crit Care 16(1):R4. doi:10.1186/cc10602
    • View reference on PubMed
    • View reference on publisher's website
  40. Oczenski W, Hörmann C, Keller C, Lorenzl N, Kepka A, Schwarz S, Fitzgerald RD (2004) Recruitment maneuvers after a positive end-expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome. Anesthesiology 101(3):620–625
    • View reference on PubMed
    • View reference on publisher's website
  41. Meade MO, Guyatt GH, Cook DJ, Lapinsky SE, Hand L, Griffith L, Stewart TE (2002) Physiologic randomized pilot study of a lung recruitment maneuver in acute lung injury. Am J Respir Crit Care Med 165:A683
    • View reference on publisher's website
  42. Stewart TE, Cooper J, Laufer B, Lapinsky SE, Langevin S, Granton JT, Muscedere J, Ward M, Woolfe C, Lesur O (2007) Complications of recruitment maneuvers in a multicenter trial of lung protective ventilation in ALI/ARDS. Am J Respir Crit Care Med 175:A943
    • View reference on publisher's website
  43. ART Investigators (2012) Rationale, study design, and analysis plan of the alveolar recruitment for ARDS Trial (ART): study protocol for a randomized controlled trial. Trials 13:153. doi:10.1186/1745-6215-13-153
    • View reference on publisher's website
  44. Hodgson C, Nichol A (2012) A multi-centre trial of an open lung strategy including permissive hypercapnia, alveolar recruitment and low airway pressure in patients with acute respiratory distress syndrome (PHARLAP). ClinicalTrials.gov registration number: NCT00431158. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01667146?term=NCT01667146&rank=1. Accessed 1 July 2014

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement