Log in | Register

Distinct determinants of long-term and short-term survival in critical illness

Allan Garland| Kendiss Olafson| Clare D. Ramsey| Marina Yogendran| Randall Fransoo
Volume 40, Issue 8 / August , 2014

Pages 1097 - 1105



To identify the determinants of short-term and long-term survival in adult patients admitted to intensive care units (ICUs).


This population-based, observational cohort study included all eleven adult ICUs in the Winnipeg Health Region of Manitoba, Canada, analyzing initial ICU admissions during the period 1999–2010 of all Manitobans ≥17 years old. Analysis included Kaplan–Meier survival curves and multivariable regression models of 30-day mortality and post-90-day survival among those who survived to day 90. We used likelihood ratios to compare the predictive power of clusters of variables in these models.


After 33,324 initial ICU admissions, mortality rates within 30 and 90 days were 15.9 and 19.5 %, respectively. The survival curve demonstrated an early phase with a high rate of death, followed by a markedly lower death rate that was only clearly established after several months. 30-day mortality was predominantly determined by characteristics of the acute illness; with its relative contribution set at 1.00, the next largest contributors were age (0.19) and comorbidity (0.16). In contrast, post-90-day mortality was mainly determined by age (relative contribution 1.00) and comorbidity (0.95); the next largest contributor was characteristics of acute illness (0.28).


We observed two phases of survival related to critical illness. Short-term mortality was mainly determined by the acute illness, but its effect decayed relatively rapidly. Mortality beyond 3 months, among those who survived to that point, was mainly determined by age and comorbidity. Recognition of these findings is relevant to discussions with patients and surrogates about achievable goals of care.



  1. Rosenberg AL (2002) Recent innovations in intensive care unit risk-prediction models. Curr Opin Crit Care 8:321–330
    • View reference on PubMed
  2. Rogers J, Fuller HD (1994) Use of daily acute physiology and chronic health evaluation (APACHE) II scores to predict individual patient survival rate. Crit Care Med 22:1402–1445
    • View reference on PubMed
  3. Vasilevskis EE, Kuzniewicz MW, Dean ML, Clay T, Vittinghoff E, Rennie DJ, Dudley RA (2009) Relationship between discharge practices and Intensive Care Unit in-hospital mortality performance evidence of a discharge bias. Med Care 47:803–812
    • View reference on PubMed
  4. Mazur D, Hickam D (1990) Interpretation of graphic data by patients in a general medicine clinic. J Gen Intern Med 5:402–405
    • View reference on PubMed
  5. Stevens L, Cook D, Guyatt G, Griffith L, Walter S, McMullin J (2002) Education, ethics, and end-of-life decisions in the intensive care unit. Crit Care Med 30:290–296
    • View reference on PubMed
  6. Christakis NA, Iwashyna TJ (1998) Attitude and self-reported practice regarding prognostication in a national sample of internists. Arch Intern Med 158:2389–2395
    • View reference on PubMed
  7. White D, Engelberg R, Wenrich M, Lo B, Curtis J (2007) Prognostication during physician–family discussions about limiting life support in intensive care units. Crit Care Med 35:442–448
  8. Sinuff T, Adhikari N, Cook D, Schünemann H, Griffith L, Rocker G, Walter S (2006) Mortality predictions in the intensive care unit: comparing physicians with scoring systems. Crit Care Med 34:878–885
    • View reference on PubMed
  9. Timmers T, Verhofstad M, Moons K, Leenen L (2011) Long-term survival after surgical intensive care unit admission: fifty percent die within 10 years. Ann Surg 253:151–157
    • View reference on PubMed
  10. Ulvik A, Kvåle R, Wentzel-Larsen T, Flaatten H (2007) Multiple organ failure after trauma affects even long-term survival and functional status. Crit Care 11:R95
    • View reference on PubMed
  11. Baldwin MR, Narain W, Wunsch H, Lederer DJ, Bach PB (2012) Predictors of 6 month mortality for elderly survivors of critical illness. Am J Respir Crit Care Med 185:A6787
  12. Ho KM, Knuiman M, Finn J, Webb SA (2008) Estimating long-term survival of critically ill patients: the PREDICT model. PLoS One 3:e3226
    • View reference on PubMed
  13. Garland A, Olafson K, Ramsey C, Yogendren M, Fransoo R (2013) Distinct determinants of long-term and short-term survival in critical illness. Am J Respir Crit Care Med 187:A5075
  14. Haupt MT, Bekes CE, Brilli RJ, Carl LC, Gray AW, Jastremski MS, Naylor DF, Rudis M, Spevetz A, Wedel SK, Horst M, Task Force of the American College of Critical Care Medicine and the Society of Critical Care Medicine (2003) Guidelines on critical care services and personnel: recommendations based on a system of categorization of three levels of care. Crit Care Med 31:2677–2683
    • View reference on PubMed
  15. Manitoba Health (2011) Manitoba health population report: June 1, 2011. https://www.gov.mb.ca/health/population/pr2011.pdf. Accessed 16 Jul 2012
  16. Garland A, Yogendran M, Olafson K, Scales DC, McGowan K-L, Fransoo R (2012) The accuracy of administrative data for identifying the presence and timing of admission to Intensive Care Units in a Canadian province. Med Care 50:e1–e6
  17. Fransoo R, Yogendran M, Olafson K, Ramsey C, McGowan K-L, Garland A (2012) Constructing episodes of inpatient care: data infrastructure for population-based research. BMC Med Res Methodol 12:133
    • View reference on PubMed
  18. Finkelstein DM, Muzikansky A, Schoenfeld DA (2003) Comparing survival of a sample to that of a standard population. J Natl Cancer Inst 95:1434–1439
    • View reference on PubMed
  19. Complete life table, Manitoba (2000 to 2002) Statistics Canada. http://www.statcan.gc.ca/pub/84-537-x/4064441-eng.htm. Accessed 25 Feb 2014
  20. Statistics Canada (2007) Postal Code Conversion File (PCCF), reference guide. Statistics Canada, Ottawa
  21. Elixhauser A, Steiner C, Harris DR, Coffey RM (1998) Comorbidity measures for use with administrative data. Med Care 36:8–27
    • View reference on PubMed
  22. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43:1130–1139
    • View reference on PubMed
  23. Stukenborg G, Wagner D, Connors A Jr (2001) Comparison of the performance of two comorbidity measures, with and without information from prior hospitalizations. Med Care 39:727–739
    • View reference on PubMed
  24. Marrie RA, Dawson NV, Garland A (2009) Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. J Clin Epidemiol 62:510–516
  25. Fox J (1991) Regression diagnostics. Sage, London
  26. Kleinbaum DG (1996) Survival analysis: a self-learning text. Springer, New York
  27. Harrell Jr FE (2001) Regression modeling strategies. Springer, New York, pp 202–206
  28. Williams TA, Dobb GJ, Finn JC, Knuiman MW, Geelhoed E, Lee KY, Webb SAR (2008) Determinants of long-term survival after intensive care. Crit Care Med 36:1523–1530
    • View reference on PubMed
  29. Shavelle RM, Strauss D, Whyte J, Day SM, Yu YL (2001) Long-term causes of death after traumatic brain injury. Am J Phys Med Rehabil 80:510–516
  30. Fuchs L, Chronaki CE, Park S, Novack V, Baumfeld Y, Scott D, McLennan S, Talmor D, Celi L (2012) ICU admission characteristics and mortality rates among elderly and very elderly patients. Intensive Care Med 38:1654–1661
    • View reference on PubMed
  31. Biston P, Aldecoa C, Devriendt J, Madl C, Chochrad D, Vincent J-L, De Backer D (2014) Outcome of elderly patients with circulatory failure. Intensive Care Med 40:50–56
    • View reference on PubMed
  32. deRooij SE, Govers A, Korevaar JC, Abu-Hanna A, Levi M, deJonge E (2006) Short-term and long-term mortality in very elderly patients admitted to an intensive care unit. Intensive Care Med 32:1039–1044
  33. Render ML, Kim HM, Welsh DE, TImmons S, Johnston J, Hui S, Connors AF, Wagner D, Daley J, Hofer TP, VA ICU Project (VIP) Investigators (2003) Automated intensive care unit risk adjustment: results from a National Veterans Affairs study. Crit Care Med 31:1638–1646
    • View reference on PubMed
  34. Johnston JA, Wagner DP, Timmons S, Welsh D, Tsevat J, Render ML (2002) Impact of different measures of comorbid disease on predicted mortality of Intensive Care Unit patients. Med Care 40:929–940
  35. Knaus WA, Wagner DP, Zimmerman JE, Draper EA (1993) Variations in mortality and length of stay in intensive care units. Ann Intern Med 118:753–761
    • View reference on PubMed
  36. Azoulay E, Alberti C, Legendre I, Buisson CB, Gall JRL, European Sepsis Group (2005) Post-ICU mortality in critically ill infected patients: an international study. Intensive Care Med 31:56–63
    • View reference on PubMed
  37. Garland A, Fransoo R, Olafson K, Ramsey C, Yogendran M, Chateu D, McGowan K (2011) The epidemiology and outcomes of critical illness in Manitoba. Manitoba Centre for Health Policy, Winnipeg
  38. Fried TR, Bradley EH, Towle VR, Allore H (2002) Understanding the treatment preferences of seriously ill patients. N Engl J Med 346:1061–1068
    • View reference on PubMed
  39. Cuthbertson BH, Roughton S, Jenkinson D, MacLennan G, Vale L (2010) Quality of life in the five years after intensive care: a cohort study. Crit Care 14:R6
    • View reference on PubMed
  40. Wunsch H, Guerra C, Barnato AE, Angus DC, Li G, Linde-Zwirble WT (2010) Three-year outcomes for medicare beneficiaries who survive intensive care. JAMA 303:849–856
    • View reference on PubMed
  41. Yende S, D’Angelo G, Mayr F, Kellum J, Weissfeld L, Kaynar A, Young T, Irani K, Angus D, GenIMS Investigators (2011) Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths. PLoS One 6:e22847
    • View reference on PubMed

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement