Log in | Register

Prognostic value of troponins in sepsis: a meta-analysis

Francis Bessière| Safia Khenifer| Julie Dubourg| Isabelle Durieu| Jean-Christophe Lega
Systematic Review
Volume 39, Issue 7 / July , 2013

Pages 1181 - 1189

Abstract

Rationale

The role of biomarkers such as troponin in risk stratification of sepsis is still debated. The aim of this meta-analysis is to assess the relation between troponin elevation in sepsis and mortality.

Methods

All observational studies from Embase, Medline and those manually searched up to September 2010 were included. Studies identified were those which reported on patients with a diagnosis of sepsis and if a 2 × 2 table could be constructed based on troponins and death. We pooled the relative risk (RR) and odds-ratio (OR) using the inverse variance method in studies that conducted univariate and multivariable (adjusted) analysis.

Main results

Thirteen studies encompassing 1,227 patients were included. The prevalence of elevated troponin was 61 % ([95 %] CI 58–64 %). Elevated troponin was significantly associated with all-cause mortality (RR 1.91; CI 1.63–2.24), with homogeneity across studies. In adjusted analysis (four studies comprising 791 patients) according to prognostic scores, elevated troponin was associated with an increased risk of death (OR 1.92; CI 1.35–2.74). The area under the ROC curve was 0.68 (CI 0.63–0.71). Pooled sensitivity and specificity were 77 % (CI 61–88) and 47 % (CI 30–64) with heterogeneity across studies. It corresponded to positive and negative likelihood ratios of 1.50 (95 % CI: 1.20–1.90) and 0.49 (CI 0.38–0.64), respectively.

Conclusions

Elevated troponin identifies a subset of patients with sepsis at higher risk of death. Further studies are needed to define the precise role of troponins and their optimal cut-offs.

Keywords

References

  1. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242
    • View reference on publisher's website
    • View reference on PubMed
  2. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310
    • View reference on publisher's website
    • View reference on PubMed
  3. Grocott-Mason RM, Shah AM (1998) Cardiac dysfunction in sepsis: new theories and clinical implications. Intensive Care Med 24:286–295
  4. Khan IA, Tun A, Wattanasauwan N, Win MT, Hla TA, Hussain A, Vasavada BC, Sacchi TJ (1999) Elevation of serum cardiac troponin I in non cardiac and cardiac diseases other than acute coronary syndromes. Am J Emerg Med 17:225–229
  5. Markou N, Gregorakos L, Myrianthefs P (2011) Increased blood troponin levels in ICU patients. Curr Opin Crit Care 17:454–463
    • View reference on publisher's website
    • View reference on PubMed
  6. Brivet FG, Jacobs FM, Colin P, Prat D, Grigoriu B (2006) Cardiac troponin level is not an independent predictor of mortality in septic patients requiring medical intensive care unit admission. Crit Care 10:404
    • View reference on publisher's website
    • View reference on PubMed
  7. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012
    • View reference on publisher's website
    • View reference on PubMed
  8. Levy M, Fink MP, Marshall JC, Abraham JC, Abraham E, Angus D, Cook D, Cohen D, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International sepsis definitions conference. Intensive Care Med 29(4):530–538
    • View reference on PubMed
  9. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis (1992) Crit Care 20:864–874
  10. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558
    • View reference on publisher's website
    • View reference on PubMed
  11. Cucherat M, Boissel JP, Leizorovicz A, Haugh MC (1997) EasyMA: a program for the meta-analysis of clinical trials. Comput Methods Programs Biomed 53:187–190
    • View reference on publisher's website
    • View reference on PubMed
  12. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293
    • View reference on publisher's website
    • View reference on PubMed
  13. Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH, Hunink MG, Stijnen T (2008) Bivariate random effects meta-analysis of ROC curves. Med Decis Making 28:621–638
    • View reference on publisher's website
    • View reference on PubMed
  14. Irwig L, Tosteson AN, Gatsonis C, Lau J, Colditz G, Chalmers TC, Mosteller F (1994) Guidelines for meta-analyses evaluating diagnostic tests. Ann Intern Med 120:667–676
    • View reference on publisher's website
    • View reference on PubMed
  15. Walter SD (2002) Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med 15(21):1237–1256
    • View reference on publisher's website
  16. Gatsonis C, Paliwal P (2006) Meta-analysis of diagnostic and screening test accuracy evaluations: methodologic primer. AJR Am J Roentgenol 187:271–281
    • View reference on publisher's website
    • View reference on PubMed
  17. STATA. Data analysis and statistical software. Copyright StataCorp. College Station, TX
  18. Baker WL, White CM, Cappelleri JC, Kluger J, Coleman CI (2009) Understanding heterogeneity in meta- analysis: the role of meta-regression. Int J Clin Pract 63:1426–1434
    • View reference on publisher's website
    • View reference on PubMed
  19. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634
    • View reference on publisher's website
    • View reference on PubMed
  20. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893
    • View reference on publisher's website
    • View reference on PubMed
  21. Spies C, Haude V, Fitzner R, Schroder K, Overbeck M, Runkel N, Schaffartzik W (1998) Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 113:1055–1063
    • View reference on publisher's website
    • View reference on PubMed
  22. Fernandes CJ Jr, Akamine N, Knobel E (1999) Cardiac troponin: a new serum marker of myocardial injury in sepsis. Intensive Care Med 25:1165–1168
  23. Turner A, Tsamitros M, Bellomo R (1999) Myocardial cell injury in septic shock. Crit Care Med 27:1775–1780
    • View reference on publisher's website
    • View reference on PubMed
  24. ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP, Gorus FK (2000) Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 46:650–657
    • View reference on PubMed
  25. Ammann P, Fehr T, Minder EI, Gunter C, Bertel O (2001) Elevation of troponin I in sepsis and septic shock. Intensive Care Med 27:965–969
  26. Mehta NJ, Khan IA, Gupta V, Jani K, Gowda RM, Smith PR (2004) Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. Int J Cardiol 95:13–17
    • View reference on publisher's website
    • View reference on PubMed
  27. John J, Awab A, Norman D, Dernaika T, Kinasewitz GT (2007) Activated protein C improves survival in severe sepsis patients with elevated troponin. Intensive Care Med 33:2122–2128
  28. Issa VS, Taniguchi LU, Park M, Cruz LM, Bocchi EA, Velasco IT, Soriano F (2008) Positive end-expiratory pressure and renal function influence B-type natriuretic peptide in patients with severe sepsis and septic shock. Arq Bras Cardiol 91:107–112
    • View reference on publisher's website
    • View reference on PubMed
  29. Choon-ngarm T, Partpisanu P (2008) Serum cardiac troponin-T as a prognostic marker in septic shock. J Med Assoc Thai 91:1818–1821
    • View reference on PubMed
  30. Yucel T, Memis D, Karamanlioglu B, Sut N, Yuksel M (2008) The prognostic value of atrial and brain natriuretic peptides, troponin I and C-reactive protein in patients with sepsis. Exp Clin Cardiol 13:183–188
    • View reference on PubMed
  31. Kang EW, Na HJ, Hong SM, Shin SK, Kang SW, Choi KH, Lee HY, Han DS, Han SH (2009) Prognostic value of elevated cardiac troponin I in ESRD patients with sepsis. Nephrol Dial Transplant 24:1568–1573
    • View reference on publisher's website
    • View reference on PubMed
  32. John J, Woodward DB, Wang Y, Yan SB, Fisher D, Kinasewitz GT, Heiselman D (2010) Troponin-I as a prognosticator of mortality in severe sepsis patients. J Crit Care 25:270–275
    • View reference on publisher's website
    • View reference on PubMed
  33. Guest TM, Ramanathan AV, Tuteur PG, Schechtman KB, Ladenson JH, Jaffe AS (1995) Myocardial injury in critically ill patients. A frequently unrecognized complication. JAMA 273:1945–1949
    • View reference on publisher's website
    • View reference on PubMed
  34. Gurkan F, Alkaya A, Ece A et al (2004) Cardiac troponin-I as a marker of myocardial dysfunction in children with septic shock. Swiss Med Wkly 134:593–596
    • View reference on PubMed
  35. Hirsch R, Landt Y, Porter S et al (1997) Cardiac troponin I in pediatrics:normal values and potential use in the assessment of cardiac injury. J Pediatr 130:872–877
    • View reference on publisher's website
    • View reference on PubMed
  36. Singh S, Evans TW (2006) Organ dysfunction during sepsis. Intensive Care Med 32:349–360
  37. Maeder M, Fehr T, Rickli H, Ammann P (2006) Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 129:1349–1366
    • View reference on publisher's website
    • View reference on PubMed
  38. Altmann DR, Korte W, Maeder MT, Fehr T, Haager P, Rickli H, Kleger GR, Rodriguez R, Ammann P (2010) Elevated cardiac troponin I in sepsis and septic shock: no evidence for thrombus associated myocardial necrosis. PLoS One 5
  39. Wu AHB (2001) Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med 27:959–961
  40. Dinnes J, Deeks J, Kirby J, Roderick P (2005) A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technol Assess 9:1–113

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement