Log in | Register

Risk-adjusted monitoring of blood-stream infection in paediatric intensive care: a data linkage study

Katie Harron| Angie Wade| Berit Muller-Pebody| Harvey Goldstein| Roger Parslow| Jim Gray| John C. Hartley| Quen Mok| Ruth Gilbert
Original
Volume 39, Issue 6 / June , 2013

Pages 1080 - 1087

Abstract

Purpose

National monitoring of variation in the quality of infection control in paediatric intensive care units (PICUs) requires comparisons of risk-adjusted rates. To inform the development of a national monitoring system, we evaluated the effects of risk-adjustment and outcome definition on comparisons of blood-stream infection (BSI) rates in PICU, using linkage of risk-factor data captured by national audit (PICANet) with laboratory records of BSI.

Methods

Admission data for two children’s hospitals 2003–2010 were extracted from PICANet and linked using multiple identifiers with laboratory BSI records. We calculated trends of PICU-acquired BSI, defined as BSI occurring between at least 2 days after admission until up to 2 days following discharge. In one PICU, we compared rates of all PICU-acquired BSI with clinically significant PICU-acquired BSI submitted to the national surveillance system.

Results

Of 20,924 admissions, 1,428 (6.8 %) were linked to 1,761 PICU-acquired BSI episodes. The crude incidence rate-ratio for PICU-acquired BSI between PICUs was 1.15 [95 % confidence interval (CI) 1.05–1.26] but increased to 1.26 (1.14–1.39) after risk-adjustment. Rates of PICU-acquired BSI were 13.44 (95 % CI 12.60–14.28) per 1,000 bed-days at PICU 1 and 18.05 (95 % CI 16.80–19.32) at PICU 2. Of PICU-acquired BSI at PICU 2, 41 % was classified as clinically significant. Rates of PICU-acquired BSI decreased by 10 % per year between 2003 and 2010 for skin organisms and 8 % for non-skin organisms.

Conclusions

Risk-adjustment and standardisation of outcome measures are essential for fair comparisons of BSI rates between PICUs. Linkage of risk-factor data and BSI surveillance is feasible and could allow national risk-adjusted monitoring.

Keywords

References

  1. Lakshmi KS, Jayashree M, Singhi S, Ray P (2007) Study of nosocomial primary bloodstream infections in a pediatric intensive care unit. J Trop Pediatr 53(2):87–92. doi:10.1093/tropej/fml073
    • View reference on PubMed
    • View reference on publisher's website
  2. Abou Elella R, Najm H, Balkhy H, Bullard L, Kabbani M (2010) Impact of bloodstream infection on the outcome of children undergoing cardiac surgery. Pediatr Cardiol 31(4):483–489. doi:10.1007/s00246-009-9624-x
    • View reference on PubMed
    • View reference on publisher's website
  3. Elward A, Hollenbeak C, Warren D, Fraser V (2005) Attributable cost of nosocomial primary bloodstream infection in pediatric intensive care unit patients. Pediatrics 115(4):868
    • View reference on PubMed
    • View reference on publisher's website
  4. Yogaraj J, Elward A, Fraser V (2002) Rate, risk factors, and outcomes of nosocomial primary bloodstream infection in pediatric intensive care unit patients. Pediatrics 110(3):481
    • View reference on PubMed
    • View reference on publisher's website
  5. Pronovost P, Goeschel C, Colantuoni E, Watson S, Lubomski L, Berenholtz S, Thompson D, Sinopoli D, Cosgrove S, Sexton J (2010) Sustaining reductions in catheter related bloodstream infections in Michigan intensive care units: observational study. BMJ 340:c309
    • View reference on PubMed
    • View reference on publisher's website
  6. Bhutta A, Gilliam C, Honeycutt M, Schexnayder S, Green J, Moss M, Anand K (2007) Reduction of bloodstream infections associated with catheters in paediatric intensive care unit: stepwise approach. BMJ 334(7589):362–365
    • View reference on PubMed
    • View reference on publisher's website
  7. Miller MR, Griswold M, Harris JM II, Yenokyan G, Huskins WC, Moss M, Rice TB, Ridling D, Campbell D, Margolis P, Muething S, Brilli RJ (2010) Decreasing PICU catheter-associated bloodstream infections: nACHRI’s quality transformation efforts. Pediatrics 125(2):206–213. doi:10.1542/peds.2009-1382
    • View reference on PubMed
    • View reference on publisher's website
  8. Department of Health (2005) Saving Lives: a delivery programme to reduce healthcare associated infections including MRSA. Department of Health, London
  9. Pronovost PJ, Berenholtz SM, Needham DM (2008) Translating evidence into practice: a model for large scale knowledge translation. BMJ 337:a1714. doi:10.1136/bmj.a1714
    • View reference on PubMed
    • View reference on publisher's website
  10. Lilford R, Mohammed MA, Spiegelhalter D, Thomson R (2004) Use and misuse of process and outcome data in managing performance of acute medical care: avoiding institutional stigma. Lancet 363(9415):1147–1154
    • View reference on PubMed
    • View reference on publisher's website
  11. Davenport RJ, Dennis MS, Warlow CP (1996) Effect of correcting outcome data for case mix: an example from stroke medicine. BMJ 312(7045):1503–1505
    • View reference on PubMed
    • View reference on publisher's website
  12. García Álvarez L, Aylin P, Tian J, King C, Catchpole M, Hassall S, Whittaker-Axon K, Holmes A (2011) Data linkage between existing healthcare databases to support hospital epidemiology. J Hosp Infect 79(3):231–235
    • View reference on PubMed
    • View reference on publisher's website
  13. Lamagni T, Potz N, Powell D, Pebody R, Wilson J, Duckworth G (2011) Mortality in patients with meticillin-resistant Staphylococcus aureus bacteraemia, England 2004–2005. J Hosp Infect 77(1):16–20
    • View reference on PubMed
    • View reference on publisher's website
  14. Universities of Leeds and Leicester (2012) Paediatric Intensive Care Audit Network National Report 2009–2011. ISBN 9780853163121 Available:http://wwwpicanetorguk/Documents/General/Annual_Report_2012/Ninth_PICANet_Annual_Report_2009_2011_Summary_Reportpdf Accessed 19 September 2012
  15. Slater A, Shann F, Pearson G (2003) PIM2: a revised version of the Paediatric Index of Mortality. Intens Care Med 29(2):278–285
  16. Safdar N, Maki D (2004) The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intens Care Med 30(1):62–67. doi:10.1007/s00134-003-2045-z
    • View reference on publisher's website
  17. O’Grady N, Alexander M, Dellinger E, Gerberding J, Heard S, Maki D, Masur H, McCormick R, Mermel L, Pearson M (2002) Guidelines for the prevention of intravascular catheter-related infections. Am Acad Pediatr Policy 110(5):e51–e74
  18. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care—associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36(5):309–332
    • View reference on PubMed
    • View reference on publisher's website
  19. StataCorp (2009) Stata statistical software: release 11. StataCorp LP, College Station
  20. Shann F, Pearson G, Slater A, Wilkinson K (1997) Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care. Intens Care Med 23(2):201–207
    • View reference on publisher's website
  21. Harron K, Ramachandra G, Mok Q, Gilbert R (2011) Consistency between guidelines and reported practice for reducing the risk of catheter-related infection in British paediatric intensive care units. Intens Care Med 37(10):1641–1647
    • View reference on publisher's website
  22. Holman CDAJ, Preen DB, Baynham NJ, Finn JC, Semmens JB (2005) A multipurpose comorbidity scoring system performed better than the Charlson index. J Clin Epidemiol 58(10):1006–1014
    • View reference on PubMed
    • View reference on publisher's website
  23. Armitage J, van der Meulen J (2010) Identifying co-morbidity in surgical patients using administrative data with the Royal College of Surgeons Charlson Score. Brit J Surg 97(5):772–781
    • View reference on PubMed
    • View reference on publisher's website
  24. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care Nov 43(11):1130–1139
    • View reference on publisher's website
  25. Preen DB, Holman CDAJ, Spilsbury K, Semmens JB, Brameld KJ (2006) Length of comorbidity lookback period affected regression model performance of administrative health data. J Clin Epidemiol 59(9):940–946
    • View reference on PubMed
    • View reference on publisher's website
  26. Centers for Disease Control and Prevention (2012) Central Line-Associated Bloodstream Infection (CLABSI) event: guidelines and procedures for monitoring CLABSI. National Healthcare Safety Network (NHSN) manual Atlanta, GA: NHSN (http://www.cdc.gov/nhsn/PDFs/pscManual/4PSC_CLABScurrent.pdf)
  27. Laupland KB, Gregson DB, Vanderkooi OG, Ross T, Kellner JD (2009) The changing burden of pediatric bloodstream infections in Calgary, Canada, 2000–2006. Pediatr Infect Dis J 28(2):114
    • View reference on PubMed
    • View reference on publisher's website
  28. Kollef MH, Zilberberg MD, Shorr AF, Vo L, Schein J, Micek ST, Kim M (2011) Epidemiology, microbiology and outcomes of healthcare-associated and community-acquired bacteremia: a multicenter cohort study. J Infection 62(2):130–135
    • View reference on publisher's website

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement