Log in | Register

Bedside prediction rule for infections after pediatric cardiac surgeryOpen access

Selma O. Algra| Mieke M. P. Driessen| Alvin W. L. Schadenberg| Antonius N. J. Schouten| Felix Haas| Casper W. Bollen| Michiel L. Houben| Nicolaas J. G. Jansen
Pediatric Original
Volume 38, Issue 3 / March , 2012

Pages 474 - 481

Abstract

Purpose

Infections after pediatric cardiac surgery are a common complication, occurring in up to 30% of cases. The purpose of this study was to develop a bedside prediction rule to estimate the risk of a postoperative infection.

Methods

All consecutive pediatric cardiac surgery procedures between April 2006 and May 2009 were retrospectively analyzed. The primary outcome variable was any postoperative infection, as defined by the Center of Disease Control (2008). All variables known to the clinician at the bedside at 48 h post cardiac surgery were included in the primary analysis, and multivariable logistic regression was used to construct a prediction rule.

Results

A total of 412 procedures were included, of which 102 (25%) were followed by an infection. Most infections were surgical site infections (26% of all infections) and bloodstream infections (25%). Three variables proved to be most predictive of an infection: age less than 6 months, postoperative pediatric intensive care unit (PICU) stay longer than 48 h, and open sternum for longer than 48 h. Translation into prediction rule points yielded 1, 4, and 1 point for each variable, respectively. Patients with a score of 0 had 6.6% risk of an infection, whereas those with a maximal score of 6 had a risk of 57%. The area under the receiver operating characteristic curve was 0.78 (95% confidence interval 0.72–0.83).

Conclusions

A simple bedside prediction rule designed for use at 48 h post cardiac surgery can discriminate between children at high and low risk for a subsequent infection.

Keywords

References

  1. Grisaru-Soen G, Paret G, Yahav D, Boyko V, Lerner-Geva L (2009) Nosocomial infections in pediatric cardiovascular surgery patients: a 4-year survey. Pediatr Crit Care Med 10:202–206
    • View reference on PubMed
    • View reference on publisher's website
  2. Levy I, Ovadia B, Erez E, Rinat S, Ashkenazi S, Birk E, Konisberger H, Vidne B, Dagan O (2003) Nosocomial infections after cardiac surgery in infants and children: incidence and risk factors. J Hosp Infect 53:111–116
    • View reference on PubMed
    • View reference on publisher's website
  3. Valera M, Scolfaro C, Cappello N, Gramaglia E, Grassitelli S, Abbate MT, Rizzo A, Abbruzzese P, Valori A, Longo S, Tovo PA (2001) Nosocomial infections in pediatric cardiac surgery, Italy. Infect Control Hosp Epidemiol 22:771–775
    • View reference on PubMed
    • View reference on publisher's website
  4. Sarvikivi E, Lyytikainen O, Nieminen H, Sairanen H, Saxen H (2008) Nosocomial infections after pediatric cardiac surgery. Am J Infect Control 36:564–569
    • View reference on PubMed
    • View reference on publisher's website
  5. Urrea M, Pons M, Serra M, Latorre C, Palomeque A (2003) Prospective incidence study of nosocomial infections in a pediatric intensive care unit. Pediatr Infect Dis J 22:490–494
    • View reference on PubMed
  6. Singh-Naz N, Sprague BM, Patel KM, Pollack MM (1996) Risk factors for nosocomial infection in critically ill children: a prospective cohort study. Crit Care Med 24:875–878
    • View reference on PubMed
    • View reference on publisher's website
  7. Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Pediatrics 103:e39
    • View reference on PubMed
    • View reference on publisher's website
  8. Allen ML, Hoschtitzky JA, Peters MJ, Elliott M, Goldman A, James I, Klein NJ (2006) Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery. Crit Care Med 34:2658–2665
    • View reference on PubMed
    • View reference on publisher's website
  9. Allpress AL, Rosenthal GL, Goodrich KM, Lupinetti FM, Zerr DM (2004) Risk factors for surgical site infections after pediatric cardiovascular surgery. Pediatr Infect Dis J 23:231–234
    • View reference on PubMed
    • View reference on publisher's website
  10. Barker GM, O’Brien SM, Welke KF, Jacobs ML, Jacobs JP, Benjamin DK Jr, Peterson ED, Jaggers J, Li JS (2010) Major infection after pediatric cardiac surgery: a risk estimation model. Ann Thorac Surg 89:843–850
    • View reference on PubMed
    • View reference on publisher's website
  11. Costello JM, Graham DA, Morrow DF, Potter-Bynoe G, Sandora TJ, Laussen PC (2009) Risk factors for central line-associated bloodstream infection in a pediatric cardiac intensive care unit. Pediatr Crit Care Med 10:453–459
    • View reference on PubMed
    • View reference on publisher's website
  12. Das S, Rubio A, Simsic JM, Kirshbom PM, Kogon B, Kanter KR, Maher K (2011) Bloodstream infections increased after delayed sternal closure: cause or coincidence. Ann Thorac Surg 91:793–797
    • View reference on PubMed
    • View reference on publisher's website
  13. Mehta PA, Cunningham CK, Colella CB, Alferis G, Weiner LB (2000) Risk factors for sternal wound and other infections in pediatric cardiac surgery patients. Pediatr Infect Dis J 19:1000–1004
    • View reference on PubMed
    • View reference on publisher's website
  14. Nateghian A, Taylor G, Robinson JL (2004) Risk factors for surgical site infections following open-heart surgery in a Canadian pediatric population. Am J Infect Control 32:397–401
    • View reference on PubMed
    • View reference on publisher's website
  15. Tan L, Sun X, Zhu X, Zhang Z, Li J, Shu Q (2004) Epidemiology of nosocomial pneumonia in infants after cardiac surgery. Chest 125:410–417
    • View reference on PubMed
    • View reference on publisher's website
  16. Holzmann-Pazgal G, Hopkins-Broyles D, Recktenwald A, Hohrein M, Kieffer P, Huddleston C, Anshuman S, Fraser V (2008) Case-control study of pediatric cardiothoracic surgical site infections. Infect Control Hosp Epidemiol 29:76–79
    • View reference on PubMed
    • View reference on publisher's website
  17. Michalopoulos A, Geroulanos S, Rosmarakis ES, Falagas ME (2006) Frequency, characteristics, and predictors of microbiologically documented nosocomial infections after cardiac surgery. Eur J Cardiothorac Surg 29:456–460
    • View reference on PubMed
    • View reference on publisher's website
  18. Tsai CS, Tsai YT, Lin CY, Lin TC, Huang GS, Hong GJ, Lin FY (2010) Expression of thrombomodulin on monocytes is associated with early outcomes in patients with coronary artery bypass graft surgery. Shock 34:31–39
    • View reference on PubMed
  19. Eggum R, Ueland T, Mollnes TE, Videm V, Aukrust P, Fiane AE, Lindberg HL (2008) Effect of perfusion temperature on the inflammatory response during pediatric cardiac surgery. Ann Thorac Surg 85:611–617
    • View reference on PubMed
    • View reference on publisher's website
  20. Qadan M, Gardner SA, Vitale DS, Lominadze D, Joshua IG, Polk HC Jr (2009) Hypothermia and surgery: immunologic mechanisms for current practice. Ann Surg 250:134–140
    • View reference on PubMed
    • View reference on publisher's website
  21. O’Brien JE Jr, Marshall JA, Tarrants ML, Stroup RE, Lofland GK (2010) Intraoperative hyperglycemia and postoperative bacteremia in the pediatric cardiac surgery patient. Ann Thorac Surg 89:578–583
    • View reference on PubMed
    • View reference on publisher's website
  22. Ghafoori AF, Twite MD, Friesen RH (2008) Postoperative hyperglycemia is associated with mediastinitis following pediatric cardiac surgery. Paediatr Anaesth 18:1202–1207
    • View reference on PubMed
  23. Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123:110–118
    • View reference on PubMed
    • View reference on publisher's website
  24. Lacour-Gayet F, Clarke D, Jacobs J, Comas J, Daebritz S, Daenen W, Gaynor W, Hamilton L, Jacobs M, Maruszsewski B, Pozzi M, Spray T, Stellin G, Tchervenkov C, Mavroudis C, The Aristotle Committee (2004) The Aristotle score: a complexity-adjusted method to evaluate surgical results. Eur J Cardiothorac Surg 25:911–924
  25. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332
    • View reference on PubMed
    • View reference on publisher's website
  26. Royston P, Moons KG, Altman DG, Vergouwe Y (2009) Prognosis and prognostic research: developing a prognostic model. BMJ 338:b604
    • View reference on PubMed
    • View reference on publisher's website
  27. Belderbos M, Levy O, Bont L (2009) Neonatal innate immunity in allergy development. Curr Opin Pediatr 21:762–769
    • View reference on PubMed
    • View reference on publisher's website
  28. Prasad PA, Dominguez TE, Zaoutis TE, Shah SS, Teszner E, Gaynor JW, Tabbutt S, Coffin SE (2010) Risk factors for catheter-associated bloodstream infections in a Pediatric Cardiac Intensive Care Unit. Pediatr Infect Dis J 29:812–815
    • View reference on PubMed
    • View reference on publisher's website
  29. Maher KO, VanDerElzen K, Bove EL, Mosca RS, Chenoweth CE, Kulik TJ (2002) A retrospective review of three antibiotic prophylaxis regimens for pediatric cardiac surgical patients. Ann Thorac Surg 74:1195–1200
    • View reference on PubMed
    • View reference on publisher's website
  30. Bode LG, Kluytmans JA, Wertheim HF, Bogaers D, Vandenbroucke-Grauls CM, Roosendaal R et al (2010) Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med 362:9–17
    • View reference on PubMed
    • View reference on publisher's website
  31. Harbarth S, Samore MH, Lichtenberg D, Carmeli Y (2000) Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation 101:2916–2921
    • View reference on PubMed
  32. Kato Y, Shime N, Hashimoto S, Nomura M, Okayama Y, Yamagishi M, Fujita N (2007) Effects of controlled perioperative antimicrobial prophylaxis on infectious outcomes in pediatric cardiac surgery. Crit Care Med 35:1763–1768
    • View reference on PubMed
    • View reference on publisher's website
  33. Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, Berg J, Khardori N, Hanna H, Hachem R, Harris RL, Mayhall G (1999) A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med 340:1–8
    • View reference on PubMed
    • View reference on publisher's website
  34. Levy I, Katz J, Solter E, Samra Z, Vidne B, Birk E, Ashkenazi S, Dagan O (2005) Chlorhexidine-impregnated dressing for prevention of colonization of central venous catheters in infants and children: a randomized controlled study. Pediatr Infect Dis J 24:676–679
    • View reference on PubMed
    • View reference on publisher's website
  35. Clarizia NA, Manlhiot C, Schwartz SM, Sivarajan VB, Maratta R, Holtby HM, Gruenwald CE, Caldarone CA, Van Arsdell GS, McCrindle BW (2011) Improved outcomes associated with intraoperative steroid use in high-risk pediatric cardiac surgery. Ann Thorac Surg 91:1222–1227
    • View reference on PubMed
    • View reference on publisher's website
  36. Pasquali SK, Hall M, Li JS, Peterson ED, Jaggers J, Lodge AJ, Marino BS, Goodman DM, Shah SS (2010) Corticosteroids and outcome in children undergoing congenital heart surgery: analysis of the pediatric health information systems database. Circulation 122:2123–2130
    • View reference on PubMed
    • View reference on publisher's website
  37. McMaster P, Park DY, Shann F, Cochrane A, Morris K, Gray J, Cottrell S, Belcher J (2009) Procalcitonin versus C-reactive protein and immature-to-total neutrophil ratio as markers of infection after cardiopulmonary bypass in children. Pediatr Crit Care Med 10:217–221
    • View reference on PubMed
    • View reference on publisher's website

Sign In

Connect with ICM

Top 5 Articles Editors Picks Supplement